
GWindows: Robust Stereo Vision for Gesture-Based
Control of Windows

*
*
*
*

*

ABSTRACT
Perceptual user interfaces promise modes of fluid computer-
human interaction that complement the mouse and key-
board, and have been especially motivated in non-desktop
scenarios, such as kiosks or smart rooms. Such interfaces,
however, have been slow to see use for a variety of reasons,
including the computational burden they impose, a lack of
robustness outside the laboratory, unreasonable calibration
demands, and a shortage of sufficiently compelling appli-
cations. We address these difficulties by using a fast stereo
vision algorithm for recognizing hand positions and gestures.
Our system uses two inexpensive video cameras to extract
depth information. This depth information enhances auto-
matic object detection and tracking robustness, and may
also be used in applications. We demonstrate the algorithm
in combination with speech recognition to perform several
basic window management tasks, report on a user study
probing the ease of using the system, and discuss the impli-
cations of such a system for future user interfaces.

1. INTRODUCTION
Perceptual user interfaces (PUIs) use alternate sensing

modalities to replace or complement traditional mouse and
keyboard input. For example, video cameras may be used to
sense the presence of a user, track the user’s hands to control
a cursor or perform commands with gestures, in concert with
speech recognition processes. Often the goal of such research
is for the system to simulate natural modes of interaction,
as in conversational interfaces [8]. At the same time and
in the near term, are faced with a variety of rather more
mundane, specialized devices and applications that do not
have the traditional mouse and keyboard interface, including
TabletPCs, media-center PCs, kiosks, hand-held computers,
home appliances, video-games, and wall-sized displays. In
these scenarios, PUIs offer to replace the more traditional
interaction modalities. PUIs may also add value by com-
plementing traditional interfaces, by providing an alternate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI-PUI 2003 Vancouver, BC, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: Perceptual interfaces enable “casual” and “10 foot”

interfaces in scenarios where mice and keyboards are not appro-

priate or available

channel for interaction, such as using voice to communicate
with an intelligent assistant [7] while working on a project or
dismissing a notification while working on a primary task.
Perceptual modalities can also be valuable in scenarios in
which the mouse and keyboard are clumsy and require more
effort than they should (e.g., adjusting the volume on the
media player). Finally, perception-based interaction can be
leveraged to assist disabled users who have lost the fine con-
trol of hand musculature.
Unfortunately most examples of PUIs are still quite frag-

ile; these systems often are based on techniques sensitive
to unique environmental circumstances (e.g. color models
that highly depend on the lighting conditions), rely on the
use of multiple CPUs or specialized hardware, are usually
installed and maintained in very limited quantities, and re-
quire laborious calibration. We believe that for these novel
interfaces to be adopted, they must perform robustly out-
side of the laboratory, be computationally inexpensive, rely
on common hardware, and be easy to set up and calibrate.
Also, they cannot rely on intrusive devices such as gloves,
headsets or close-talk microphones.
In this paper, we propose a real-time stereo vision algo-

rithm for PUIs that is designed with these constraints in
mind. We review an application of the algorithm in a mul-
timodal system, named GWindows, that allows users to
manipulate on-screen objects with gestures and voice.

2. RELATED WORK
Work on PUIs draws on wide variety of fields, includ-

ing signal processing, user interface design, computer vision,
speech processing and behavior modeling. Here we limit our-



selves to considering PUIs used to interact with on-screen
interfaces.
Many perceptual interface systems have been developed

for intelligent room systems. For example, the ALIVE sys-
tem [13] used computer vision to track the users as they
moved about the room. The system had limited gesture
recognition abilities, which allowed the user to interact with
a character on a large wall display.
In [4] computer vision techniques were used to find the

user’s open hand from across the room. Their system was
then applied to controlling a television. Seated on a couch,
the user could manipulate a graphical icon of a hand on-
screen. To change the volume, the user moved the hand
onto an on-screen slider. Freeman and Weissman found the
feedback of the hand to be very effective in assisting the
user.
The potential of manipulating on-screen objects with hand

gestures sensed with computer vision is explored in [11].
Gross movement was used for pointing, and the hand shape
was used to select commands. Kjeldsen highlighted the diffi-
culties in constructing systems that meet users’ expectations
for responsiveness, particularly in pointing tasks. Users
found arbitrary mappings between gestures and commands
difficult to learn and remember. Difficulties with respon-
siveness and accuracy lead to the conclusion that such in-
terfaces are more appropriate for selecting and manipulating
large on-screen objects. Finally, new users became fatigued
easily.
In our work on GWindows, we have implemented a real-

time stereo vision system with the ability to sense the user’s
hand positions. Stereo vision has a long history in the field
of computer vision, and has been applied in various PUIs.
For example, the stereo system presented in [1] used two
cameras and a skin color model to find the position of the
user’s head and hands. This was applied to a variety of
interaction scenarios where the user, seated in front of a
large display, manipulated objects on screen. In [9] dedi-
cated stereo hardware is used to match a three dimensional
articulated model of the user. This model was then used
to recover broad pointing motions, which could be used to
point at on-screen objects. Stereo disparity and optical flow
information are combined in [18] to follow the head and
hands of the user.
We also integrate speech commands intoGWindows. There

has been much interest in developing human-computer in-
terfaces that allow the use of speech and gesture. It has
been shown that gestures and speech are two complementary
modalities: gestures are normally used to indicate objects
and spots in the screen, as well as simple moves, whereas
speech is used for specifying more abstract notions, actions
or relations[14]. It has also been noted that multimodal
commands are less ambiguous than purely oral or gestural
ones.
The paper is structured as follows: In section 3, we de-

scribe our approach to sensing the user’s hand position. Sec-
tion 4 shows this system applied to the task of manipulating
a GUI and examine the performance of this system in a user
study in section 5. Lastly, we discuss in section 6 various
extensions of this system, including implications for gesture
analysis and two-handed interaction.

3. COMPUTER VISION ALGORITHM
An important problem in using computer vision for PUIs

is the automatic real-time detection and tracking of relevant
objects in the scene. In many applications we would like to
be aware of the presence of the user, the user’s location, and
the position of the user’s head and hands.
For ease of deployment and robustness of operation we

prefer detection and recognition methods that make as few
assumptions as possible about the environment and the spe-
cific appearance of objects like hands. Secondly, we would
like to use computationally inexpensive techniques so that
the system does not prohibit the user from performing other
tasks on the same CPU. Lastly, we require that the system
be sufficiently responsive so that user’s experience is fluid.
Our algorithm uses simple, fast techniques to track multi-

ple objects moving in the scene, and relies on domain specific
constraints to determine the true object of interest. One ad-
vantage of this multiple hypothesis approach is that we may
use a simple, fast, and imperfect tracking algorithm and
rely on the fact that if a tracker fails, another may still be
following the object of interest.

3.1 Image Motion to Focus Attention
To initially find potential objects of interest, our algorithm

finds regions of the image which exhibit motion. This ex-
ploits the observation that our own attention is often drawn
to moving objects. Motion in the image is detected by com-
paring a patch of the current image centered about a given
location to a patch at the same location in the previous im-
age. To compare image patches, we use sum of absolute
differences over square patches in two images. For a patch
from image I1 centered about image location (u1, v1) and
a patch in I2 centered about (u2, v2), we define the image
comparison function SAD(I1, u1, v1, I2, u2, v2) as

∑

− D
2 ≤i,j≤ D

2

|I1(u1 + i, v1 + j) − I2(u2 + i, v2 + j)| (1)

where I(u, v) refers to the pixel at (u, v), D is the patch
width, and the absolute difference between two pixels is the
sum of the absolute differences taken over all available color
channels. To find regions in the image with movement we
find points (u, v) such that SADmotion = SAD(It−1, u, v, It, u, v) >
τ , where τ is a threshold. An object hypothesis is initiated
for each such region. To limit computation, this test for im-
age motion may be conducted on a sparse, regular grid on
the image (e.g. every 16 pixels).

3.2 Frame to Frame Tracking
Once an object hypothesis has been initiated, the posi-

tion of the object is updated at each time step by find-
ing the patch in the current image which best matches the
patch centered on the object at the previous image. We de-
fine SADmovement = SAD(It−1, ut−1, vt−1, It, ut, vt) where
(ut, vt) refers to the image location at time t. A simple frame
to frame tracker finds (ut, vt) that minimizes SADmovement.
This simple block matching technique suffers from drift prob-
lems, where over time the tracker may begin following some
part of the image off the intended object. To combat drift,
we optimize both SADmovement and SADmotion as a weighted
sum. Intuitively, this combination uses motion to coarsely
track the object as it moves, while using the frame-to-frame
tracking to precisely “stick” on a given part of the moving
object, as well as maintain the tracker when the object is
not moving.
The tracking search is conducted over a small window



(typically 10 pixels) around the predicted location of the ob-
ject, assuming a linear dynamics model with noise (Kalman
filter). Note that we use the term movement to imply a
representation based on a discrete object and its location
over time, while we use motion to refer to change in image
intensity values in a given region of the image due to the
movement of one or more objects.
If the average movement of an object falls below some

threshold, it is eliminated as an object hypotheses. Further-
more, if the distance between a given object hypothesis and
any other object hypothesis falls below a threshold (say, five
inches in world coordinates), it is supposed that that the two
hypotheses are redundant, and one of the two hypotheses is
eliminated.

3.3 Object Depth
Binocular disparity is a primary means for recovering depth

information from two or more images taken from different
viewpoints. Given the 2D position of an object in two views,
it is straightforward to triangulate to find the depth of the
object [6].
Typically disparity is computed by matching an image in-

tensity pattern (patch) at a given location in the first image
to its pair in the second image. Often this approach is used
to compute a map which gives the depth in the scene at ev-
ery location in the image. Computing such a depth map is
very computationally intensive, and often requires dedicated
hardware to run in real-time [10, 3].
To limit computation, we only compute binocular dispar-

ity at points within the image that correspond to object
hypotheses. For a given point in the image, (u, v), we find
the value of disparity d such that the sum of absolute differ-
ences over a patch in the right image centered on (u, v) and
a corresponding patch in the left image centered over (u −
d, v) is minimal, i.e. d that minimizes SADdisparity(Il, u −
d, v, Ir, u, v). Furthermore, with an estimate of the depth of
the point from a previous time step, we may limit the search
over values of d corresponding to a range of depth around
the last known depth. This search may be further narrowed
by computing a prediction of the object’s new location from
a Kalman filter.
Note that in this stereo matching process, we assume that

both cameras are parallel (that is, their rasters are paral-
lel). If we wish to recover the depth in real world coor-
dinates, we must also know the distance between the pair
of cameras (baseline). In practice, both calibration issues
may be addressed automatically by fixing the cameras on
a prefabricated mounting bracket, or semiautomatically by
the user presenting objects at known depth in a short cal-
ibration routine. Lastly, we improve the accuracy of the
transform to world coordinates by accounting for lens dis-
tortion effects with a static, pre-computed calibration for a
given camera [19].

3.4 Selective Attention
Unlike many other computer vision algorithms, the al-

gorithm does not rely on fragile appearance models such as
skin color models or hand image classification schemes which
are prone to break when environmental conditions change or
when the system is confronted with a new user. This robust-
ness comes at a cost of relying on application constraints to
determine which of multiple object hypotheses to select as
the true object of interest. We believe that this is a valuable

Figure 2: Object hypotheses (indicated by square solid colored

dots on the image) are supported by frame to frame tracking

through time in one view and stereo matching across both views

trade-off in many circumstances.
In some cases there is a natural criterion to adopt. For

example, for a given application it may be reasonable to
monitor only the objects closest to the cameras, while ig-
noring all others. In our hand-tracking application, if the
user is facing the cameras it is often the case that the object
closest to the cameras is the hand. Another application may
focus on objects that exhibit a particular quality of move-
ment over time. Or a two-handed interaction application
may select an object to the left of the dominant hand (for
right-handers) as the non-dominant hand.
Figure 2 illustrates the 3-d tracking and 3-d depth compu-

tations. Note that all three steps, motion detection, track-
ing and depth computation, use the same sum of absolute
difference function on image patches. This computation is
easily optimized for SIMD instructions, permitting a very
fast implementation.

4. GWINDOWS

We have developed GWindows, an application that al-
lows users to conduct various window management tasks
without the mouse and keyboard. The GWindows inter-
face extends the usual WIMP interface, enabling users to
“grab” a window with their hands and move it across their
desktop, close, minimize, maximize windows and scroll the
foreground window.

GWindows was designed with the view that PUIs may
be applied to everyday GUI-based computing tasks, and
thereby the system may serve to introduce and evangelize
perceptual interfaces to people otherwise unfamiliar with
the notion that their computer is capable of sensing their
activities and responding appropriately. Another motiva-
tion is to offer an alternative user interface to applications
in which a keyboard and mouse are either undesirable or
unavailable. For example, in the so-called “10 foot” user ex-
perience offered by media center PCs GWindows-like sys-
tems may obviate or complement the IR remote control. Al-
though GWindows is rather conservative in its extension of
the user experience (especially compared to conversational
or agent-based interfaces), it is interesting to note that the
recent sci-fi thriller Minority Report, set in the year 2054,
shows the main character using a very elegant two-handed
interface which relies on a similar sensing and interaction
paradigm, particularly in how objects are picked up and
moved on-screen.



(a) (b)

Figure

3: The GWindows system allows the user select windows on

the display. (a) Feedback regarding the user’s hand position is

provided by a hand icon which moves to follow the user’s hand.

(b) Any command mode in effect is indicated by drawing the

name of the mode below the hand.

Users explicitly initiate an interaction with GWindows
by moving their hand across a predefined “engagement plane”,
an invisible plane about twenty inches in front of the display,
and parallel to the plane of the display. When the hand
crosses the engagement plane, feedback is given to the user
by drawing a large alpha-blended hand icon on the usual
Windows desktop. This icon is distinct from the usual Win-
dows cursor and can be viewed as an area cursor [17]. The
engagement plane is placed such that the user’s hands do
not enter it during the usual use of the mouse and keyboard.
When the system is “engaged”, the hand icon is moved to
reflect the position of the user’s hand. This is illustrated in
Figure 3. A similar scheme for hand position feedback was
used in [4].
An open microphone used for speech recognition is placed

in front of and below the display. The user may invoke one
of a small set of verbal commands in order to act upon the
current window under the hand icon. When an utterance is
understood by the system, the token phrase is drawn along
with the icon to give feedback that the speech recognition
system understood the utterance.
The full functionality of GWindows is as follows: (1)

Move: By uttering “move” the user initiates the continu-
ous movement of the window under the hand to follow the
movement of their hand. Movement of the window is termi-
nated when the user’s hand is disengaged by moving behind
the engagement plane, or when the user utters “release”. (2)
Close, Minimize, Maximize: By uttering “close”, “mini-
mize”, or “maximize” the currently selected window is acted
upon appropriately. (3) Raise, Send to Back: By utter-
ing “raise”, the selected window is popped to the foreground,
while uttering “send to back” sends the selected window be-
hind all other windows. (4) Scroll: By uttering “scroll”,
the user initiates a scrolling mode on the current window,
in which the rate of scrolling up and down on the window
is proportional to how far above or below the hand is in
relation to its position when scrolling mode was initiated,
similar to functionality often obtained with mouse wheels.
Scrolling is terminated when the user’s hand is disengaged
by moving behind the engagement plane, or when the user
utters “release”.
When the user switches modes as described above, the

user is given feedback by the appearance of the mode name
displayed in green lettering under the hand icon, as Figure
3(b) illustrates. In the case of using speech recognition, this

mode label offers valuable feedback to indicate the success
of the speech recognition process.

4.1 Implementation Details
Our implementation of GWindows uses the computer vi-

sion system described section 3, with two Firewire webcams
acquiring 320x240 color images at a frame rate of 30Hz. The
multiple hypothesis tracking system is configured to handle
at most 6 trackers simultaneously. Speech recognition is per-
formed using Microsoft SAPI 5.1, with a simple command
and control grammar and an inexpensive open microphone
placed in front of and below the display. The computer vi-
sion module uses an MMX implementation of the sum of
absolute differences image function (Equation 1). The cur-
rent system takes less than 15% of the CPU time on a 1GHz
Pentium III.
The engagement and acquisition of the hand is imple-

mented in the stereo vision system by simply looking for
any object hypothesis with depth less than 20 inches. Any
such hypothesis is considered the active hand in GWindows
until it is moved behind the engagement plane, or when it is
removed from the set of tracked object hypotheses, in which
case the nearest remaining object hypothesis is selected.

5. PILOT USER STUDY
We performed a preliminary, qualitative user study to de-

termine how everyday users of GUIs find using GWindows.
In this study, we confirm Kjeldsen’s observations on a re-
lated system in which he found users become adept at se-
lecting and moving items on the display very quickly, while
new users tend to tire easily holding up their hand [11].
Unlike Kjeldsen’s system, however, we rely on a small set
of speech commands rather than requiring the user to put
their hands in specific configurations to change application
function.
Eighteen people (eight women and ten men) participated

in the experiment. They ranged in age from late 20s to
early 40s; all were experienced computer users. Whereas all
men worked in computer-science related fields, the women
worked in the administrative or library-related fields.
The experiment was conducted on the implementation of

GWindows described in the previous section, in which the
keyboard and mouse were removed (see Figure 4). The
participants had no access to keyboard and mouse. They
could only interact with the computer by hand motions and
speech. The experimenter was seated behind the partici-
pants, with access to a second display, keyboard and mouse
to open some Internet Explorer windows on the participant’s
display.

5.1 Procedure and design
Participants were tested individually in a single session

that lasted ten to fifteen minutes. Each participant per-
formed two kinds of tasks. After explaining the GWindows
system, the experimenter demonstrated the engage/disengage
interaction with the computer using GWindows. Finally
she explained verbally and with examples each of the fol-
lowing commands: Close, Move, Raise, Send to Back
and Scroll. The participant was then invited to freely in-
teract with the computer using GWindows and to practice
each of the previously mentioned commands.
After acknowledging proficiency with the system, the par-

ticipant was asked three questions to be answered using the



Figure 4: Experimental Setup. Study participants were seated

in front of a GWindows-enabled display and an open microphone

for speech recognition.

GWindows interface by manipulating five Internet Explorer
windows, some of which contained the answers to the ques-
tions. These windows were placed on the display by the
experimenter. The participants were asked to answer the
questions in any order and without any time constraints.
The questions were: (1) What is the weather forecast for to-
morrow? (2) What is playing at the Crossroads 8 cinemas?
(3) What is the top story on the New York Times?
After completing this task, the participants were asked to

answer a questionnaire with 31 Likert scale questions (where
1 corresponds to strongly agree and 5 to strongly disagree)
about their experience using GWindows and their general
attitude regarding perceptual interfaces.

5.2 Discussion
After three to five minutes of interaction with the system,

all but one of the users were comfortable managing windows
using GWindows. In the question-answering task, some
participants used a strategy of reordering the windows with
Send to Back and Raise commands, while others pre-
ferred to move the windows to reveal the information they
were looking for. All the participants successfully finished
this task (i.e. correctly answered the three questions) in a
time period of three to seven minutes. On rare occasions,
if the system was not performing as expected, participants
tended to move even closer to the display, or move their
hands faster. Analogous to the Lombard effect in speech
recognition, this change in behavior in the extreme tends to
degrade performance.
Users tended to have difficulty with the speech recogni-

tion, which gave some errors, probably because it was not
tuned to individual users. Many used “Stop” or “No” in-
stead of “Release” to finish a Move or Scroll command.
Some users found occasional jittering of the virtual hand
troublesome. Other users were impressed by the tracking
ability. Some users occluded the computer screen with their
hand. They found relatively quickly that they could change
their body position to avoid this problem. Many users thought
that GWindows would be a good system for kiosk environ-
ments or at home, i.e. in 10ft interfaces.
From the written survey (Likert scale 1 agree 5 disagree),

users indicated that they enjoyed interacting with the com-
puter using GWindows and they were generally satisfied
with their own performance. Participants imagined GWin-

dows being used in accessibility scenarios first (1.5±0.15)1,
then to control their TV from across the room (2.1 ± 0.24)
and finally to interact with a kiosk in a public place (2.2 ±
0.23). All had a very positive reaction to the video user
interface that appears in the movie Minority Report (1.6 ±
0.1). GWindows was rated as an intuitive way to man-
age windows (2.3 ± 0.15), but not particularly comfortable
(3.2± 0.23). In particular, the participants found that their
arm got tired after a while (2 ± 0.26). Participants rated
the Scroll command as the most difficult, possibly due
to to the rate-control mechanism used in scrolling mode.
Even though the speech recognition system was not found
to be particularly reliable (2.7 ± 0.25), the participants en-
joyed being able to use speech commands in the experiment
(2.1 ± 0.17). They showed a slight preference for gestures
instead of speech (2.7 ± 0.26), even though the version of
GWindows that they used provided no support for using
gestures to invoke commands.

6. EXTENDING GWINDOWS

From the previous pilot user study we realized that, al-
though people found GWindows very easy to learn, fatigue
and speech recognition errors were problematic. We believe
that fatigue is due primarily to the fact that subjects had to
raise their arm and maintain their arm position for some sec-
onds in order to reach many regions of the screen and move
the GWindows hand icon with some degree of precision.
Fatigue may be addressed partly by scaling the movement
of the hand so that smaller movements are required to reach
all parts of the screen, and by changing the configuration of
the cameras such that they track object motion just above
the keyboard, and therefore holding the hand in front of the
display is no longer required.
To address the difficulties users had with speech recogni-

tion during the user study, we added functionality to GWin-
dows that permits most operations to be performed with-
out the use of speech: in addition to using speech to initiate
modes of interaction such as moving or raising windows, the
user may operate GWindows by using gestures. In this
case, the user may select interaction modes by pausing or
dwelling the hand over the target window. By dwelling a
short amount of time (about 0.5 seconds), the target window
is raised if its not already the topmost window. If the hand
dwells a longer amount of time (about 1 to 1.5 seconds),
the hand icon text then changes to “gesture”, and the user
may move the hand quickly left or right (a flick gesture) to
send a window to the adjacent (left or right) monitor in a
multi-monitor system. The system smoothly animates the
movement of the window with a “swish” sound. If there is
no adjacent monitor, then the window is minimized. If the
user dwells even longer (about 2 seconds), the mode changes
to the “Move” mode described previously. The user may
exit the “Move” mode by pausing again. This change of
interaction mode by dwelling relies on the continuous feed-
back of the mode label under the icon: a user simply pauses
and dwells long enough until the desired mode is displayed.
When the user then moves the hand, the system effects the
mode’s associated action (e.g., moving windows) and also
exits the selection of modes.

6.1 Gesture Recognition
1The results are provided as the average value ± the stan-
dard deviation



Our initial experiments with dwell time and left/right flick
gestures suggest that gesture recognition may be useful but
requires careful design. In [12] users often find gesture-based
systems highly desirable, but they are also dissatisfied with
the recognition accuracy of gesture recognizers. Further-
more, experimental results show that users’ difficulty with
gestures is in part due to a lack of understanding of how
the gesture system works. Long et al highlight the ability of
users to learn and remember gestures as an important de-
sign consideration. In light of these findings, we believe that
one general approach is to standardize a small set of easily
learned gestures, the semantics of which are determined by
application context.
A small set of very simple gestures may offer significant

bits of functionality where they are needed most. For exam-
ple, dismissing a notification window may be accomplished
by a quick gesture moving the hand from one side to the
other, as in shooing a fly. Another example is gestures
for “next” and “back” functionality found in web browsers,
PowerPoint and other applications. A simple gesture-based
navigation facility to web browsers may significantly reduce
the time taken to carry out one of the most common ac-
tions in computer use: using the “back” button to return to
previously visited pages [15] . In the experiments described
Moyle et al. users’ subjective ratings showed a strong pref-
erence for the “flick” system, where the users would flick the
mouse left or right to go back or forward in the web browser.
Even when mouse and keyboard are available, users may

find it attractive to manipulate often-used applications while
away from the keyboard, in what we call a “casual inter-
face” or “lean-back” posture. Browsing email over morning
coffee might be accomplished by mapping simple gestures
to “next message” and “delete message”. There are other
circumstances where the user’s hands might be dirty and
gestures could provide a practical interface to the computer
(e.g. reading email or reading some online recipe while cook-
ing).
Finally, gestures may compensate for the limitations of

the mouse when the display is several times larger than to-
day’s typical displays or in a multiple monitor situation. In
such a scenario, gestures can provide mechanisms to restore
the ability to quickly reach any part of the display, where
once a mouse was adequate with a small display. Similarly,
in a multiple display scenario it is desirable to have a fast,
comfortable way to indicate a particular display. For ex-
ample, in the current GWindows system, the foreground
object may be “bumped” to another display by moving the
hand in the direction of the target display.
Note that in many cases the surface forms of these various

gestures may remain the same throughout these examples,
while the semantics of the gestures depends on the appli-
cation at hand. Providing a small set of standard gestures
eases problems users have in recalling how gestures are per-
formed, and also allows for simpler and more robust signal
processing and recognition processes.

6.2 Two-Handed, Mouse and Hand UI
Mice are particularly suited to fine cursor control, and

most users have much experience with them. GWindows
can provide a secondary, coarse control that may comple-
ment mice in some applications. For example, in a map ap-
plication, the user might cause the viewpoint to change with

GWindows, while using the mouse to select and manipu-
late particular objects in the view. GWindows may also
provide a natural “push-to-talk” or “stop-listening” signal
to speech recognition processes. In [16] users were shown to
prefer using a perceptual user interface for push-to-talk.
Our multiple hypothesis tracking framework allows for the

detection and tracking of multiple objects. Thus we may
consider tracking both hands for a two-handed interface.
Studies show that people naturally assign different tasks to
each hand, and that the non-dominant hand can support the
task of the dominant hand [5]. Two-handed interfaces are
often used to specify spatial relationships that are otherwise
more difficult to describe in speech. For example, it is nat-
ural to describe the relative sizes of objects by holding up
two hands, or to specify how an object (dominant hand) is
to be moved with respect to its environment (non-dominant
hand) [2].

7. CONCLUSION
GWindows demonstrates the use of perceptual user in-

terfaces (PUIs) in everyday GUI tasks. Users were able to
pick up the system very quickly, and many were pleasantly
surprised to find how responsive the system is. We look for-
ward to exploring extensions to GWindows that highlight
interaction scenarios in which perceptual user interfaces add
value beyond traditional interfaces.

8. REFERENCES
[1] A. Azarbayejani and A. Pentland. Real-time self-calibrating

stereo person tracking using 3-D shape estimation from
blob features. In Proceedings of 13th ICPR, Vienna,
Austria, August 1996. IEEE Computer Society Press.

[2] W. Buxton and B. Myers. A study in two-handed input. In
Proc. of CHI’86, pages 321–326, 1986.

[3] T. Darrell, G. Gordon, M. Harville, and J. Woodfill.
Integrated person tracking using stereo, color, and pattern
detection, 1998.

[4] W. T. Freeman and C. Weissman. Television control by
hand gestures. In Intl. Workshop on Automatic Face and
Gesture Recognition, pages 179–183, 1995.

[5] Y. Guiard. Assymetric division of labor in human skilled
bimanual action: The kinematic chain as a model. Journal
of Motor Behavior, 19(4):486–517, 1987.

[6] B. Horn. Robot Vision. MIT Press, 1988.
[7] E. Horvitz. Principles of mixed-initiative user interfaces. In

Proc. of CHI ’99, 1999.
[8] E. Horvitz and T. Paek. A computational architecture for

conversation. In Proc. of the Seventh International
Conference on User Modeling, pages 201–210, 1999.

[9] N. Jojic, B. Brumitt, B. Meyers, and S. Harris. Detecting
and estimating pointing gestures in dense disparity maps.
In Proceed. of IEEE Intl. Conf. on Automatic Face and
Gesture Recognition, 2000.

[10] T. Kanade. Development of a video-rate stereo machine. In
Proc. of ARPA Image Understanding Workshop (IUW’94),
pages 549 – 558, 1994.

[11] F. Kjeldsen. Visual Interpretation for Hand Gestures as a
Practical Interface Modality. PhD thesis, Department of
Computer Science, Columbia University, 1997.

[12] J. A. Long, J. Landay, and L. Rowe. Implications for a
gesture design tool. In Proc. CHI’99, pages 40–47, 1999.

[13] P. Maes, T. Darrell, B. Blumberg, and A. Pentland. The
alive system: wireless, full-body interaction with
autonomous agents. ACM Multimedia Systems, Special
Issue on Multimedia and Multisensory Virutal Worlds,
1996.



[14] C. Mignot, C. Valot, and N. Carbonell. An experimental
study of future ’natural’ multimodal human-computer
interaction. In Proc. of INTERCHI93, pages 67–68, 1993.

[15] M. Moyle and A. Cockburn. Gesture navigation: An
alternative ’back’ for the future. In Proc. of CHI02, pages
822–823, 2002.

[16] A. Oh, H. Fox, M. Van Kleek, A. Adler, K. Gajos,
L. Morency, and T. Darrell. Evaluating look-to-talk: a
gaze-aware interface in a collaborative environment. In
CHI’02, pages 650–651, 2002.

[17] A. Worden, N. Walker, K. Bharat, and S. Hudson. Making
computers easier for older adults to use: area cursors and
sticky icons. In Proc. of Conf. on Human factors in
computing systems, pages 266–271, 1997.

[18] I. Yoda and K. Sakaue. Utilization of stereo disparity and
optical flow information for human interaction. In Proc. of
ICCV’98, 1998.

[19] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, 2000.


