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Abstract

We present HealthGear, a real-time wearable system for
monitoring, visualizing and analyzing physiological sig-
nals. HealthGear consists of a set of non-invasive physio-
logical sensors wirelessly connected via Bluetooth to a cell
phone which stores, transmits and analyzes the physiologi-
cal data, and presents it to the user in an intelligible way.
In this paper, we focus on an implementation of HealthGear
using a blood oximeter to monitor the user’s blood oxygen
level and pulse while sleeping. We also describe two dif-
ferent algorithms for automatically detecting sleep apnea
events, and illustrate the performance of the overall system
in a sleep study with 20 volunteers.

1 Introduction and Previous Work

In recent years there has been increasing interest in wear-
able health monitoring devices, both in research and indus-
try. These devices are particularly important to the world’s
increasingly aging population, whose health has to be as-
sessed regularly or monitored continuously. The impli-
cations and potential of these wearable health monitoring
technologies are paramount.

A good portion of these devices have been developed
for the sports conditioning and weight management areas.
There are sophisticated watches available today [12] that
provide real-time heart rate information and let users store
and analyze their data on their home PCs. Bodymedia [2]
has developed an armband that has multiple sensors to con-
tinuously collect physiological data for a few days at a time.

The areas of wearable health monitoring devices [13, 3,
11, 10, 5, 4, 1] and wireless sensor networks for physiolog-
ical monitoring [9, 6] have also experienced very active re-
search recently. However, most systems to date do not per-
form real-time analysis of the physiological signals in the
wearable devices. The physiological data is typically ana-
lyzed on a home PC at a later time. Moreover, proprietary
data formats prevent users from consolidating and correlat-

ing health monitoring data from different devices.
In this paper we describe HealthGear, a wearable real-

time health monitoring system. HealthGear consists of a
set of physiological sensors1 wirelessly connected via Blue-
tooth2 to a Bluetooth-enabled cell phone. We describe our
experience using HealthGear with an oximeter to constantly
monitor and analyze the user’s blood oxygen level (SpO2),
heart rate and plethysmographic signal3 in a light-weight
fashion.

Given all previous work, the main contributions of this
paper are: (1) The implementation of a real-time, light-
weight wearable health monitoring architecture, to wire-
lessly send physiological data to a cell phone; (2) The real-
time storage, visualization and analysis of the physiological
data on a cell phone; (3) The implementation of two algo-
rithms for automatically detecting sleep apnea events from
blood oximetry; (4) The validation of the complete system
(hardware and software) in a study with 20 participants.

With HealthGear we also address some of the limitations
of previous systems, by allowing real-time physiological
data collection, analysis and visualization, and by develop-
ing an architecture that is agnostic to the type and nature of
the sensors.

2 System Overview

We shall describe in this Section the three main hardware
components of HealthGear’s current implementation.

2.1 Oximetry Sensor

Pulse oximetry is a state-of-the-art noninvasive method
for determining the percentage of hemoglobin (Hb) satu-

1The current implementation of HealthGear includes an oximeter, but
the system architecture allows for any number of sensors of heterogeneous
nature.

2We chose Bluetooth because of its pervasiveness in the market today.
Any other short-range wireless communication protocol could be used in-
stead.

3Plethysmography is a term for a set of noninvasive techniques for mea-
suring volume changes in parts of the body, such as those caused by blood
being forced into vessels.
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rated with oxygen. Our choice for HealthGear was Nonin’s
Flex Oximeter, an off-the-shelf constant monitoring oxime-
try sensor – depicted in Figure 1 (top-center). This sensor is
small, light-weight, flexible and capable of long-term mon-
itoring, all of which make it particularly suitable for wear-
able applications. The sensor is connected to Nonin’s XPod
board, a processing unit that captures and processes the raw
analog sensor data and outputs a digital serial stream con-
taining SpO2 and heart rate at 3 Hz. The XPod also provides
a plethysmographic signal sampled at 75 Hz. The XPod
board is beneath the batteries on the left of Figure 1 (top).
Operating ranges for the heart rate are 18 − 300 bpm and
70 − 100% for the oxygen saturation. The sensor’s LEDs
drain 3 mW each, while the total power consumption, in-
cluding the XPod module, is 60 mW at 3 V.

HealthGear’s Architecture 

HealthGear’s Hardware
From left to right, 
(1) Sensing module with batteries, DSP unit and
Bluetooth module; 
(2) Flexible blood oximeter by NONIN for continuous
monitoring; 
(3) Audiovox SMT5600 cellular phone showing HealthGear’s 
interface (main window)

Figure 1. Top: HealthGear’s hardware,
from left to right: Sensing module (with
BT module, XPod board and batter-
ies), sensor (oximeter) and cell phone,
showing HealthGear’s interface. Bottom:
HealthGear’s client-server architecture.

2.2 Wireless Data Transmission

Once a serial data stream is produced by the sensor, a
wireless transmitter is required to send the data to the cell
phone. We chose Bluetooth (BT) because of its perva-
siveness, availability on today’s cell phones and other mo-
bile devices, and relatively low power consumption. After
evaluating several BT transmission modules, we chose the
Promi-ESD-2 module by Lemos International (see Figure
1, top-left). This is a class 2 transmitter with a built-in an-
tenna, 30 m range, current consumption of 28 mA at 9600
bps (HealthGear’s current data transmission speed) and 3 V
operating voltage. The module can be configured by means
of AT commands.

HealthGear can run continuously for about 12 hours
with two AAA rechargable batteries (see Figure 1, top-left)

which provide power to the sensor, the XPod and the BT
transmitter.

2.3 Cell Phone

The central processing unit in HealthGear is an Au-
diovox SMT5600 GSM cell phone, running the Microsoft
Windows Mobile 2003 operating system. It has built-in sup-
port for Bluetooth, 32 MB of RAM, 64 MB of ROM, a 200
MHz ARM processor and about 5 days of stand-by battery
life.

HealthGear is implemented as a Windows Mobile appli-
cation, with all its modules (sensor data reception, analysis,
display and storage) running simultaneously in real-time on
the cell phone. Figure 1 (top-right) illustrates the cell phone
with the main window of HealthGear’s interface.

2.4 Architecture

Figure 1 (bottom) depicts a block diagram of
HealthGear’s client-server architecture. HealthGear’s ser-
vice is registered in the Service Discovery Protocol (SDP)
record of the cell phone, using the Serial Port Profile (SPP)
standard through a socket interface. Once the service is up
and running, the physiological sensing modules connect as
clients to the cell phone’s physical address. The cell phone
can accept an arbitrary number of client connections from
different sensing modules.

3 Automatic Detection of Sleep Apnea

Sleep apnea is an under-diagnosed, but common sleep
condition that affects both children and adults. It is charac-
terized by periods of interrupted breathing (apnea) and pe-
riods of reduced breathing (hypoapnea). The most common
form of sleep apnea, called obstructive sleep apnea (OSA),
is caused by the partial or complete constriction of the pa-
tient’s upper airway. Regular sleep apnea leads to repeated
hypoxemia4, asphyxia5 and awakenings, and produces im-
mediate symptoms such as increased heart rate and high
blood pressure and long term symptoms such as extreme fa-
tigue, poor concentration, a compromised immune system,
slower reaction times and cardio/cerebrovascular problems.

In HealthGear we have implemented two methods for the
automatic detection of sleep apnea events. The first method
operates in the time domain, while the second operates in
the frequency domain.

3.1 Multithreshold Time Analysis

The first algorithm is inspired by the description of sleep
apnea appearing in [7], where “there is no minimum dura-

4Deficient oxygenation in the blood.
5Inability to breathe and suffocation.
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tion for an apnea event. Desaturation starts as soon as the
oxygen level falls below a baseline by a specified amount,
and continues until the signal recovers to a level, which is
lower than the baseline by 25% of the specified amount”.

This definition establishes different levels of drop for de-
saturation (drop gap) and resaturation (return gap), and re-
quires the computation of a baseline.

In HealthGear, we compute the baseline as the moving
average over a window of 5 minutes of data, but using only
the top 5% of the samples. We futher extend the definition
above to enable handling an arbitrary number of thresholds
(typically from 5% to 15% below the baseline) instead of
just one threshold.

We measure the severity in % of desaturation below the
baseline and in total duration of the event in minutes. The
lower the oxygen saturation level and the longer the dura-
tion, the more severe the event.

3.2 Spectral Analysis

Our second method is inspired by the work of Zamar-
ron et al [14], who evaluate the spectral characteristics of
nocturnal oximetry and heart rate variability obtained from
an oximeter as a diagnostic test for obstructive sleep apnea.
They report that the spectral analysis of those signals could
be useful as a diagnostic technique for patients with OSA.

In our analysis, we compute the periodogram of the
mean-subtracted oximetry signal, which provides an ap-
proximation to the power spectral density (PSD) estimate
of a sequence of data [8].

The periodograms for subjects with nonexistent, mild
and severe apnea are depicted in the bottom row of Figure
2. Note that in the case of sleep apnea, there is a significant
peak in the frequency range of 0.015−0.04Hz. This makes
it possible to automatically detect that there were sleep ap-
nea events. Moreover, the larger the amplitude of the peak,
the more severe the sleep apnea during that time window.

This frequency range has a physiological explanation,
due to periodicities in ventilation both in subjects with and
without sleep apnea.

4 Experiments

4.1 Subjects

For our experimental study we recruited 20 volunteers,
mostly male (80%) between 25 and 65 years of age. All
participants signed an informed consent form prior to the
study. We had two different sets of subjects: healthy indi-
viduals (30%) and individuals who either knew or suspected
they had sleep apnea (70%).

Before the experiment, all subjects filled out a sleep
questionnaire where they provided some demographic,

sleep quality and health information. From the subjects
that either knew or suspected they had sleep apnea, 79% re-
ported snoring, 75% reported feeling tired after their sleep
at least 3-4 times per week and 50% reported being over-
weight.

4.2 Sleep Recording

The experiment consisted of using HealthGear for one
full night in their own homes. The day of the experiment,
we met with each participant for about 15 minutes to ex-
plain them how to use the system. After the meeting, they
took the hardware with them and wore it during that night
in their homes. They returned the system to us the next
morning. After the experiment, they were asked to fill out
a second questionnaire which focused on rating the experi-
ence and the usability of HealthGear.

4.3 Analysis and Discussion

Our sleep study was a success on multiple fronts: (1)
None of our volunteers experienced any technical problem
and they all collected data successfully, which we find re-
markable given that participants took the system to their
own homes and had no supervision or guidance once at
home; (2) Our automatic OSA detection algorithms iden-
tified with 100% accuracy all 3 cases of known OSA and
clearly identified 1 case of severe and 2 cases of mild OSA,
among the pool of participants who suspected they might
be suffering from the condition, but had not undergone any
medical diagnosis; (3) 100% of participants were willing to
wear HealthGear to monitor their sleep on a regular basis
and would recommend the system to friends and family.

Figure 2 depicts typical analysis graphs for healthy sub-
jects and those with mild and severe OSA. The top row con-
tains about 30 minutes of raw oximetry data in % of blood
oxygen (blue line), and the output of the multithreshold de-
tection algorithm (green line), where the higher the value of
the green plot, the more severe the OSA event is.

The middle row depicts the histograms of time spent (y-
axis, in minutes) in desaturations from 5 to 15% below the
baseline (x-axis). Note how healthy individuals had no de-
saturations at all, while subjects with OSA had various de-
grees of desaturation. The worse the condition, the wider
the spread of the histogram, meaning that the events were
more severe.

The bottom row shows the periodograms of the oxime-
try signal, processed in 834 sample windows. As the sever-
ity of the OSA condition increases, so do the peaks in the
0.015 − 0.04 frequency range. We can therefore automat-
ically detect OSA events and their severity from the peri-
odogram signal.
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Figure 2. Typical oxygen saturation graphs (top), histograms (middle) and periodograms (bottom) of
users (a) without sleep apnea and (b) with mild apnea. The graphs depict approximately 30 minutes
of night data.

The average number of hypoxemia events per hour for
subjects with non-existent, mild and severe OSA in our user
study was: 0, 5.7 and 17.7 for 5% below the baseline, and
0, 1.4 and 3.9 for 10% below the baseline.

Finally, the results of the usability questionnaire were
very positive: (1) 100% of our participants answered that
they would be interested in using HealthGear again and that
they would recommend it to friends and family. (2) In terms
of comfort, the average comfort rating was 4.2, on a 1 to
5 Likert scale, with 1 being “very bad” and 5 being “very
good”. (3) The average rating of the experience as pleasur-
able was 3.8, on the same scale.

5 Future Work

Some areas that we would like to explore in fu-
ture research include: (1) incorporating other sensors in
HealthGear, such as galvanic skin response (GSR), ECG,
skin temperature, etc; (2) finding correlations between
lifestyle variables such as current activity, diet, exercise,
stress levels, etc. and changes in physiological signals;
(3) developing algorithms for extracting respiration rate
and blood pressure from the plethysmographic signal; (4)
carrying out a study on blood oximetry at high altitudes
(pilots); (5) comparing HealthGear’s performance with
polysomnography in a sleep clinic; (6) collaborating with
medical doctors in further user studies; (7) addressing the
so important issues of privacy, liability and security.
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