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ABSTRACT
Boredom is a common human emotion which may lead
to an active search for stimulation. People often turn to
their mobile phones to seek that stimulation. In this pa-
per, we tackle the challenge of automatically inferring bore-
dom from mobile phone usage. In a two-week in-the-wild
study, we collected over 40,000,000 usage logs and 4398
boredom self-reports of 54 mobile phone users. We show
that a user-independent machine-learning model of boredom
–leveraging features related to recency of communication, us-
age intensity, time of day, and demographics– can infer bore-
dom with an accuracy (AUCROC) of up to 82.9%. Results
from a second field study with 16 participants suggest that
people are more likely to engage with recommended content
when they are bored, as inferred by our boredom-detection
model. These findings enable boredom-triggered proactive
recommender systems that attune their users’ level of atten-
tion and need for stimulation.
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INTRODUCTION
In today’s connected world, people are constantly exposed to
external stimulation through technology – be it through con-
nected TVs and desktop PCs at home or through tablets and
mobile phones on the go. A large portion (43% according to
Nielsen1) of this time is devoted to self-stimulation and enter-
tainment activities, such as watching media, Web-browsing,
playing games and social media. Further, an increasing num-
ber of services is requesting our attention. Many Internet

1http://www.nielsen.com/us/en/insights/news/2014/how-
smartphones-are-changing-consumers-daily-routines-around-
the-globe.html
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companies primarily live off monetizing their users’ attention
by exposing them to advertisement. Consequently, attention
has become a scarce resource [11]: knowing when a user is
likely to pay attention to a specific piece of content is becom-
ing increasingly valuable.

However, attention is not always scarce. One frequently oc-
curring affective state [17] goes along with an abundance of
attentional resources: boredom. Boredom is characterized by
a “lack of stimulation” [14] and being “actively looking for
stimulation” [12]. And, technology might even have changed
our tolerance to boredom: over time people habituate to a
constant exposure to stimuli [12, 25] such that, when the level
of stimulation drops, they become bored. People who were
asked to spend 24 hours without any media as part of a study2

reported negative emotions, ranging from boredom to anxiety
and even withdrawal symptoms.

Mobile phones are a commonly used tool to fill or kill time
when bored [7, 25], especially while being on-the-go3. These
devices are most likely to be present in all kinds of boredom-
prone situations, such as subway rides, in class, or while wait-
ing. In such situations, we turn to our phones to kill time, i.e.,
for self-stimulation without having a particular task in mind.

For us, this reality represents an opportunity: if mobile
phones are able to detect when their users are killing time,
i.e. when attention is not scarce, then they could suggest a
better use of those idle moments by,

• recommending content, services, or activities that may help
to overcome the boredom;
• suggesting to turn their attention to more useful activities,

such as revisiting read later lists, going over to-do lists, or
participating in a research survey; or
• helping the user to make positive use of the boredom, such

as using it for introspection, since mental downtime is es-
sential to reflection, learning, and fostering creativity [34].

In this paper, we report from two in-the-wild user studies that
provide evidence to what extent killing time with the phone
due to boredom –characterized as a stimulus-seeking state–
manifests itself in detectable mobile usage patterns, and that
being bored makes mobile phone users more open to consume
suggested content. The main contributions of this paper are:
2http://theworldunplugged.wordpress.com/
342% of cell owners reported to have used their phone for entertain-
ment when they were bored: http://www.pewinternet.org/
2011/08/15/americans-and-their-cell-phones/
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1. A machine-learning model to automatically infer boredom
from demographics and mobile phone usage;

2. an analysis of the mobile phone usage patterns that are
most related to boredom; and

3. evidence that people are more likely to engage with sug-
gested content when the model infers that they are bored
than when they are not.

BACKGROUND AND RELATED WORK
Boredom is defined as displeasure caused by “lack of stimula-
tion or inability to be stimulated thereto.” [14]. It goes along
with a “pervasive lack of interest and difficulty concentrating
on the current activity” [15]. Eastwood [12] highlights that “a
bored person is not just someone who does not have anything
to do; it’s someone who is actively looking for stimulation but
it is unable to do so”.

Consequently, feeling bored often goes along with an urge to
escape such a state [17]. This urge can be so severe that in
one study reported by Wilson et al. [37], people preferred
to self-administer electric shocks rather than being left alone
with their thoughts for a few minutes.

“The cure to boredom is curiosity” is a famous quote by
Dorothy Parker, an American writer and poet, which high-
lights that boredom has an actual purpose: it is an emo-
tional state that signals that current activities or goals are
not sufficiently satisfying and motivating. Potential benefits
of boredom include the initiation of creative processes and
self-reflection [34]. Given that bored people long for stim-
uli and that human attention has become scarce and increas-
ingly valuable [11], there also is commercial value in know-
ing when a person is bored.

Detecting Boredom
According to Bixler and D’Mello [3], the most popular
methods for detecting boredom have been facial expressions,
speech and its paralinguistic features, text, and physiological
signals.

In one of the early landmark studies in the field, Picard et al.
[26] showed how emotional states –not including boredom–
can be recognized by physiological sensors. For 30 days, one
female subject recorded physiological sensors for 25 minutes
each day. As sensors, they used an electromyogram for rec-
ognizing facial muscles tension, a photophletysmograph to
measure blood volume pressure and HR, a skin conductance
sensor, and a hall effect respiration sensor. Features derived
from these sensors allowed to discriminate between 8 system-
atically elicited emotions with 81% accuracy.

However, to date, these sensors require extensive setup and
may therefore not be available in most situation where bore-
dom typically occurs. Thus, other researchers have explored
other ways of detecting boredom, which do not require any
explicit setup by the user.

For example, Bixler and D’Mello [3] explored how to de-
tect boredom during writing tasks through logging the writ-
ers keystrokes. They found that “boredom” was named as
an affective state in 26.4% out of the 5551 affect judgments

– second most often after engagement (35.4%). Keystrokes
alone had comparably low predictive power – roughly 11%
above chance – for discriminating engagement-neutral and
boredom-neutral states. However, when adding stable traits
of the participants to the model, prediction performance could
be notably improved.

Guo et al. [18] found that when users are engaged in a Web
search task, mouse movements, clicks, page scrolls, and other
fine-grained interaction events allow to predict the searchers
openness to let themselves be distracted from their main task,
which may be an indication of boredom.

Recently, Mark et al. [23] studied the rhythm of attention
and affect, including boredom, in the workplace. In a 5-day
in-situ study, they logged computer activity of 32 informa-
tion workers and frequently (about 17 times per day) probed
their affect. They found that boredom is related to, amongst
other variables, the time of the day and computer interaction
patterns, such as the frequency of window switches.

Inferring Emotions from Mobile Phone Usage
In the context of mobile phones, several works show that
emotions are reflected in how we use our mobile phones.
LiKamWa et al. [22] showed that daily mood (valence and
arousal) can be inferred from monitoring social interactions
via SMS, email, and phone calls, as well as routine activ-
ity, such as application usage. Similarly, Bogomolov et al.
showed that daily happiness [5] and daily stress [4] can be
inferred from mobile phone usage, personality traits, and
weather data.

There has also been extensive research on using sensors to
detect attentional states, such as a person’s level of interrupt-
ibility. As boredom is defined in terms of attention [12] –i.e.,
a state of looking for stimulation, insights from these studies
may apply to boredom as well.

In particular, it has been shown that computing devices are
able to detect a person’s openness to receiving office visits
[16], emails [21], messages from desktop instant messengers
[1], SMS and mobile phone messages [30], mobile phone
alerts [31], and mobile phone calls [20, 27].

This line of research shows that attention and openness to
interruptions can be inferred from: time since recent usage
of device [1, 16]; using of specific services –such as inter-
net browsers, email inbox, calendar [23]– or usage of mobile
phone messengers and notification center [27, 30]; level of
activity –such as switching windows [21, 23]– or use of key-
board and mouse [16, 21]; ambient noise level (as proxies
for the level of actives around the user) [16]; location (differ-
ences between home and work) [27, 31]; ringer mode (as an
indicator of how we want to manage interruptions) [27, 31];
time –such as the hour of the day or the day of the week [1,
16, 20]; and proximity, i.e., if a mobile phone’s screen is free
or covered (indicating if the phone is stowed away) [27, 30].

These studies show that level of attention, openness to inter-
ruption, and boredom measurably affect the way we interact
with technology. However, three research questions remain
unanswered to date, namely:



• If boredom, i.e. a state of actively looking for stimulation,
measurably affects phone use (RQ1);
• what aspects of mobile phone usage are the most indicative

of boredom (RQ2); and
• if people who are bored are more likely to consume sug-

gested content on their mobile phones than when they are
not bored (RQ3).

METHODOLOGY
In order to answer RQ1 and RQ2, we conducted a field study
with 54 participants who installed a dedicated data-collection
application called Borapp on their personal mobile phones
and actively contributed with their data for at least 14 days.
The goal of this study was to collect: (1) mobile phone us-
age data; and (2) ground-truth about the participants’ level of
boredom through a refined Experience Sampling methodol-
ogy [9].

Mobile Usage-Patterns Collection
Borapp ran on Android phones with OS 4.0 or newer. Usage
patterns were inferred from the mobile phone’s event listeners
and sensor data. The data that Borapp collects is split into two
groups: (1) data which is always collected and (2) data which
is only collected when the phone is in use i.e., the screen is
on and unlocked. This approach enabled us to have a battery-
efficient data-collection method.

Sensors that are constantly active are shown in Table 1 and
sensors that were activated only when the phone was un-
locked are shown in Table 2.

Sensor Description
Battery Status Battery level ranging from 0-100%
Notifications Time and type (app) of notification
Screen Events Screen turned on, off, and unlocked
Phone Events Time of incoming and outgoing calls
Proximity Screen covered or not
Ringer Mode Silent, Vibration, Normal
SMS Time of receiving, reading, and sending SMS

Table 1. List of sensors whose data was collected at all times.

Sensor Description
Airplane Mode Whether phone in airplane mode
Ambient Noise Noise in dB as sensed by the microphone
Audio Jack Phone connected to headphones or speakers
Cell Tower The cell tower the phone is connected to
Data Activity Number of bytes up/downloaded
Foreground app Package name of the app in foreground
Light Ambient light level in SI lux units
Screen Orient Portrait or Landscape mode
Wifi Infos The WiFi network the phone is connected to

Table 2. List of sensors whose data was collected only when the phone
was unlocked.

Users were required to enable the Android Accessibility Ser-
vice, as well as to grant Borapp access to notifications, in or-
der to collect data about user activity that is otherwise not ex-
posed via standard APIs. The accessibility service allowed us
to e.g. monitor which app is in the foreground without having

to run a busy-waiting polling service in the background. No-
tification access allowed us to learn when notifications from
e.g. messengers or email applications were posted.

The collected data was saved locally until the mobile phone
was connected to a Wifi network. Only then, Borapp trans-
mitted the logged data to our server so that the data transfer
would not impact our participants’ data plans.

Demographics
During the setup phase, participants were asked to enter their
age, gender, and an email address for follow-up communi-
cation. Due to the open nature of the participation, the intro-
duction of this information was voluntary and this was clearly
explained in the application.

Experience-Sampling Probes
We collected ground truth about the participants’ state of
boredom via experience-sampling (ESM) [10]. Generally,
this research method entails to probe users at certain times
throughout the day to collect their subjective feedback about
their current experience or situation. In our case, we gathered
in-situ self-reports on the subjective level of boredom.

Borapp delivered self-report probes through mobile phone
notifications (see Figure 1). These notifications were sched-
uled in semi-regular intervals whenever the phone was in use
and a minimum amount of 60 minutes had passed since the
last probe was answered. Because we were interested in un-
derstanding boredom while using the phone, a probe was
more likely to be triggered when a participant was interact-
ing with the mobile phone.

If the participant clicked on an probe notification, a view with
a mini-questionnaire opened. The questionnaire asked partic-
ipants to respond on a 5-point Likert scale to the question: “To
what extend do you agree to the following statement: ‘Right
now, I feel bored.’?”. The extremes were labelled with dis-
agree and agree. Internally, the responses were stored with
values from 0 (disagree) to 4 (agree).

Figure 1. Screenshot of the ESM probe.

Note that the mini-questionnaire also probed participants’
about their levels of valence and arousal. However, we do
not report these results here, since they are out of the scope
of this work.

Procedure
We launched the study in June 2014. For widespread distri-
bution we made Borapp available to download for free on the
Google Play store, which means that anyone could join the



study at any time by simply downloading the app. Since Bo-
rapp does not provide an immediate user benefit, we adver-
tised the study through various email lists and social network
channels.

Once participants had downloaded and installed Borapp, they
were asked for their explicit consent to their participation in
the study. Therefore the initial screen explained the back-
ground of the study, what kind of data was collected, how
and where it was stored and how it was going to be used. The
consent explicitly pointed out which personally identifiable
information was stored, namely the device location. Also,
the terms and conditions of participating in the study and to
collect the study reward were disclosed here.

After consenting, Borapp walked participants through the
setup, which includes giving access to the Android Acces-
sibility Services and grant the app access to notifications. In
the final step, participants could optionally specify their age,
gender, and an email address. Once consent was given and
Borapp was set up successfully, it started collecting data and
triggering probes via experience sampling.

To successfully participate in the study, participants had to
keep Borapp running for at least 2 weeks and answer an av-
erage of 6 probes per day. Participants could check their
progress in a status screen. Those who successfully com-
pleted were rewarded with a 20 Euro gift card of a large online
store.

Participants
Recruitment was primarily done via two mailing lists. One
list contained email addresses of computer-science students at
a German university. The other contained one thousand vol-
unteers from Spain who had signed up to be informed about
opportunities to participate in research of a large organization.
In addition, we announced the study via social networks.

At the beginning of July 2014, we created a snapshot of
the data of all participants who had completed the study so
far. The raw data set contains 43,342,860 mobile phone sen-
sor entries and 4,826 responses to the ESM probes from 61
unique mobile devices.

Checking the data for validity, we found that responses to the
ESM probes from 7 devices barely varied, which might be
an indication that their users did not seriously try to reflect
their emotional states. Hence, we filtered the data from these
devices, which led to 54 remaining participants with 4,398
valid self-reports.

All results reported subsequently will be based on the data
from the 54 valid participants. Each participants contributed
84 and 173 (M = 110.3, S D = 25.8) self reports. As ex-
plained earlier, it was voluntary to specify demographics: 39
participants specified their age in a range from 21 to 57, with
a mean age of 31.0 (S D = 7.9). In terms of gender, 11 par-
ticipants reported to be female and 23 reported to be male.
The remaining 19 participants either chose the ‘other’ option
or did not specify their gender. According to the most fre-
quent device locales (52% es ES, 18% de DE, 13% en US)

and timezones (79% UTC+1, 6% UTC+0 and 5% UTC+8),
most participants were from Spain, Germany, and the US.

RESULTS
To explore the relation between boredom and mobile phone
usage, we approached the data analysis as a machine-learning
classification task. Our rationale for following such an ap-
proach was two-fold. First, machine-learning techniques
would allow us to explore to which degree different usage pat-
terns were related to boredom and killing time on the phone,
and second, they would allow to quantify to which degree
boredom can be inferred from mobile phone usage.

Features
We extracted 35 features related to phone-usage patterns in 7
categories: context, demographics, time since last activity,
intensity of usage, external triggers, “idling” –our assump-
tion being that short, frequent phone interactions relate to less
goal-oriented activity– and type of usage. Table 3 and Table
4 list their description.

Feature Description

audio
Indicates whether the phone is connected to a headphone 
or a bluetooth speaker

charging Whether the phone is connected to a charger or not
day_of_week Day of the week (0-6)
hour_of_day Hour of the day (0-23)
light Light level in lux measured by the proximity sensor
proximity Flag whether screen is covered or not
ringer_mode Ringer mode (silent, vibrate, normal)
semantic_location Home, work, other, or unknown

age The participant's age in years
gender The participant's gender

time_last_incoming_call Time since last incoming phone call
time_last_notif Time since last notification (excluding Borapp probe)
time_last_outgoing_call Time since the user last made a phone call
time_last_SMS_read Time since the last SMS was read
time_last_SMS_received Time since the last SMS was received
time_last_SMS_sent Time since the last SMS was sent

Context

Demographics

Last Communication Activity

Table 3. List of features related to context, demographics, and time since
last communication activity.

Some of the data collected from the mobile sensors –such as
the time since the last phone call, or ringer mode status– could
be used directly as a feature. We computed other features –
such as recent battery drain or network usage– by applying
a time window prior to submitting the subjective ratings, e.g.
battery drain in the last n minutes before self-reporting the
current level of boredom. We tested time windows of 1, 5,
10, 30, and 60 minute-length prior to the probe. We achieved
the best classification results with 5-minute time windows.
Hence all time window-dependent features reported hereafter
are based on a 5-minute window.



Feature Description

battery_drain Average battery drain in time window
battery_level Battery change during the last session
bytes_received Number of bytes received during time window
bytes_transmitted Number of bytes transmitted during time window

time_in_comm_apps
Time spent in communication apps, categorized to none, 
micro session, and full session

num_notifs Number of notifications received in time window
last_notif Name of the app that created the last notification
last_notif_category Category of the app that created the last notification

apps_per_min
Number of apps used in time-window divided by time 
the screen was on

num_apps Number of apps launched in time window before probe
num_unlock Number of phone unlocks in time window prior to probe
time_last_notif_access Time since the user last opened the notification center
time_last_unlock Time since the user last unlocked the phone

screen_orient_changes
Flag whether there have been screen orientation changes 
in the time window

app_category_in_focus Category of the app in focus prior to the probe
app_in_focus App that was in focus prior to the probe
comm_notifs_in_tw

Number of notifications from communication apps 
received in the time window prior to the probe

most_used_app Name of the app used most in the time window
most_used_app_category Category of the app used most in the time window
prev_app_in_focus App in focus prior to app_in_focus

Usage (related to the type of usage)

Usage (related to usage intensity)

Usage (related to whether it was triggered externally)

Usage (related to the user being idling)

Table 4. List of features related to usage intensity, external trigger, idling
and type.

Please note that in case of application and notification-related
features, we applied a blacklist, so that Borapp and system
services4, were excluded.

Feature Cleaning
Since linear models are heavily affected by outliers, we in-
spected all numeric features to determine if they require sat-
uration, i.e. reducing outliers to a certain threshold. All of
the numeric features were long-tail distributions, hence, there
were only positive outliers. Depending on the skewness of
each feature, we chose the appropriate percentile out of 90%,
95%, and 99%, and used it as upper limit.

Many entries in the app-related features (e.g. last app in fore-
ground, most-used app, last notification) were sparse, that
is, many of the recorded apps appeared only a few times or
once. Since such sparsity makes it difficult to properly learn
the meaning of sparse elements, we reduced the dimension-
ality of these features by mapping rarely used apps into an
‘other’ category. The distribution was again heavily skewed,
thus we kept the 10 most frequent applications and mapped
the rest into the ‘other’ category. In the features describing
the application categories, we kept the three major categories
–namely, Communication, Productivity, and Society– which
account for two-third of the instances.

4For example, on some Android devices, a notification event is fired
every time the keyboard is opened.

Ground Truth
We define the modeling of boredom as a binary classification
problem: detecting whether the user is in a bored state or not.

Figure 2 shows a histogram of the boredom ratings collected
in our study. The average boredom rating is M = 1.17 and
Mdn = 1, i.e., in general our participants tended to disagree
with the statement that they felt bored in the moment in which
the question was asked.
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Figure 2. Histogram of self-report probe responses.

We computed two different ground truths: first, we took the
straightforward approach and mapped participants into the
bored class when they agreed to feeling bored (scores 3 and
4). We will refer to this as absolute ground truth.

Investigating the data, we found that some of the participants
had different anchor points, such that they rated themselves
as being much more bored on average than the rest. One ex-
planation might be that people have different predisposition
to boredom [13], hence they tend have different normal or
baseline levels of boredom.

Therefore, we decided to consider an personalized ground
truth definition that reflected when participants felt more
bored than usual. Hence, we transformed the absolute re-
sponses into personalized z-Scores, where 0 indicates that the
participant felt as (non-)bored as on average during the study.
We labeled samples with a value over +.25 in this person-
alized scale as positive. We will refer to this as normalized
ground truth.

Data Sets
While our main insights are based on a primary data set, we
explored the effect of altering two different factors.

The first aspect was whether the ground truth was computed
from absolute or normalized boredom scores. The data set
with normalized ground truth contains 4398 instances, with
1518 (34.5%) instances classified as bored, and 2880 (65.5%)
instances classified as baseline. This distribution is well
aligned with the values reported from boredom assessments



by Goetz et al. [17], where participants considered them-
selves to be bored in one third of the responses. In contrast,
the data set with absolute ground truth has 446 (10.1%) in-
stances classified as bored, hence it is less balanced.

Second, after having noticed that our scores might be affected
by our participants’ general proneness to boredom, and since
psychological traits can be beneficial when detecting affect
[3], we launched a post-hoc survey were we asked the partic-
ipants to fill out the 28-item Boredom Proneness Scale (BPS)
[13]. Since the study had been officially over, participants
didn’t have to gain anything from doing this extra work. Still,
22 of the 54 participants completed the survey and allowed us
to optionally add a boredom proneness score as new feature to
each of their self-reports. Our recent related work shows that
it may not even be required to obtain the proneness from self-
reports, since it can be estimated from average daily phone
usage [24].

Our primary data set uses normalized ground truth and no
boredom proneness information. The rationale is that this
modeling choice increases the applicability of the model: it
does not require to obtain boredom proneness scores before
its deployment and it is tailored to detect deviations in bore-
dom even for people who are not prone to be bored.

Classifier Selection
We used a variety of classification methods to empirically
evaluate their performance in our problem setting. In par-
ticular, we compared three widely used classifiers: 1) L2-
regularized Logistic Regression (LR) [19], as an example of
a linear classifier; 2) Support Vector Machines with Radial
Basis Functions kernel (SVM) [33], as an example of a non-
linear classifier; and 3) Random Forests (RF) [6], as an exam-
ple of ensemble learning.

We applied the same model-building methodology for the
three classifiers. In particular, we used a nested cross-
validation approach [8] in which an inner loop performs a grid
search over the space of model hyper-parameters to select the
best performing values, and an outer loop measures the per-
formance of the model found in the inner loop. This strategy
guarantees that in each step of the outer loop the fold being
evaluated is not used during the training phase at any point,
avoiding any positive bias when measuring the performance.
In our implementation, we chose 10-folds for the outer loop
and 5-folds for the inner loop.

The classifier that yielded the best performance was RF. Sim-
ilarly to other ensemble learning methods, e.g. as Boosting
and Bagging, Random Forests make use of multiple weak-
learners and aggregate their results, looking at optimizing the
bias-variance tradeoff. RF uses decision trees as the base clas-
sifiers, where randomization is introduced as several stages.
First, each tree in the forest is constructed using a different
bootstrapped sample of the training data. Second, each node
of a tree is greedily split considering the best feature for only
a random subset of all the variables. This process aims at re-
moving correlations between the different trees in the forest,
and helps reducing over-fitting. The resulting models are in-

herently non-linear, tolerate the presence of outliers and have
implicit support for categorical variables.

Classification Performance
Figure 3 depicts the classification performance results for the
best performing approach (RF). The performance metric we
report is AUCROC, area under the ROC (Receiver Operating
Characteristic) curve, typically used to replace the standard
classification accuracy metric for unbalanced datasets, as it is
our case.

Figure 3 shows the classification performance for the 4 data
sets. The absolute ground truth yields consistently higher per-
formance than using the normalized ground truth. Boredom
Proneness slightly reduces the variance.
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Figure 3. Area Under the ROC Curve (AUCROC) performance of the
RF classifier with the different data sets.

Figure 4 shows the precision-recall curve for the primary data
set. We observe that this model offers a high level of flexi-
bility in choosing different classification thresholds to trade
precision for recall, depending on the characteristics of the
application setting. In general, for scenarios in which bore-
dom detection is used to actively probe users, it is convenient
to prioritize precision as to minimize the number of false pos-
itives (which may annoy users). In this sense, we can tune the
model to get precision levels of 70.1% (for over 30% recall),
or 62.4% (for 50% recall) in less restrictive scenarios.
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Figure 4. Precision-recall plot for the primary data set (normalized
ground truth, no proneness).

Feature Analysis
Random forests can be used to rank features by their impor-
tance in the classifier, which provides useful insights about



the discriminative power of the features in the considered
problem setting. Mean Impurity Decrease is the most com-
mon way to obtain feature importance from random trees [6].
It is computed by averaging across all the trees in the for-
est the amount of impurity removed by each feature while
traversing down the tree, weighted by the proportion of sam-
ples that reached that node during training.

Using this method, we obtained the feature importances for
all features in the primary data set. Table 5 depicts the top 20
features and their importance (Column: Import). Grouping
these features in different categories –as depicted in Figures
3 and 4, we find that the most important categories of features
are:

• Recency of communication activity expressed by the fea-
tures regarding the last time that the user communicated
via phone or SMS, and the last time since notifications ar-
rived, as notifications were largely generated by applica-
tions from the communication category;
• Intensity of recent usage reflected by features such as the

volume of internet traffic, # phone unlocks, and level of
interaction with applications in the last five minutes;
• General usage intensity captured by e.g. battery drain,

state of the proximity sensor (i.e., whether the phone’s
screen is covered), or time since last phone use;
• Context / time of the day reflected by the hour of the day

and the values of the light sensor5; and,
• Demographics, i.e. the participants’ gender and age.

Feature Import Correlation The more bored, the ..
time_last_outgoing_call 0.0607 -0.143 less time passed
time_last_incoming_call 0.0580 0.088 more time passed
time_last_notif 0.0564 0.091 more time passed
time_last_SMS_received 0.0483 0.053 more time passed
time_last_SMS_sent 0.0405 -0.090 less time passed
time_last_SMS_read 0.0388 -0.013 less time passed
light 0.0537 -0.010 darker
hour_of_day 0.0411 0.038 later
proximity 0.0153 -0.186 less covered
gender (0=f, 1=m) 0.0128 0.099 more male (1)
age 0.0093 n.a. +20s/40s, -30s

num_notifs 0.0123 0.061 more notifications
time_last_notif_cntr_acc 0.0486 -0.015 less time passed
time_last_unlock 0.0400 -0.007 less time passed
apps_per_min 0.0199 0.024 more apps per minute
num_apps 0.0124 0.049 more apps
bytes_received 0.0546 -0.012 less bytes received
bytes_transmitted 0.0500 0.039 more bytes sent
battery_level 0.0268 0.012 the higher
battery_drain 0.0249 -0.014 the lower

Table 5. Most important features in the primary data set sorted by their
Mean Impurity Decrease score. More positive (blue) correlation values
should be interpreted as “the higher the value the more bored”.

Relation of Boredom and Top Features
To understand which usage patterns are related to boredom,
we computed the direct, global relationship between the
5The same physical sensor returns the ambient light levels and
whether the phone screen is covered

most important features and boredom. We trained a Linear-
Regression Model and analyzed the sign (positive or nega-
tive) that it assigned to each of the top-20 features. Table 5
visualizes the relation of the top-20 features in the Correla-
tion column.

Our participants tended to be more bored the more time
had passed since receiving phone calls, SMS, or notifica-
tions, and the less time had passed since making phone calls
and sending SMS. However, the volume of notifications re-
ceived in the last 5 minutes is likely to be higher when being
bored.

Being bored is also correlated with more phone use: the
screen was less likely to be covered (which, for example,
happens when the phone is stowed away), more apps were
used, the last unlocking and checking for new notifications
happened more recently, and the volume of data uploaded
was higher when our participants were bored. Interestingly,
the amount of data download and battery drain were lower
when people were bored.

Related to demographics, male participants tended to be more
bored than females, and boredom was higher for participants
in their 20s and 40s and lower in their 30s.

Boredom was more likely the later it was in the day and the
darker the ambient lighting conditions.

Finally, apps that most strongly correlated with being bored
were Instagram, email, settings, the built-in browser, and apps
in the ’other’ category. Apps that correlated most strongly
with not being bored were communication apps, Facebook,
SMS, and Google Chrome.

Please note that this analysis only reflects direct correlations
between the features and boredom. Some features may not
have a direct relationship with boredom levels, but may be-
come indicative when combined with other features. Further,
due to our observational approach, causal interpretations,
such as incoming phone calls mitigating boredom, would
only be speculative, hence we omitted them.

ONLINE-VALIDATION PILOT STUDY
To validate our third hypothesis that mobile phone users are
more open to consume suggested content on their phones
when they are bored (RQ3), we conducted an in-the-wild pi-
lot study. We released a new version of Borapp called Bo-
rapp2 that suggested to visit a popular “news” website that
offers typically short, entertaining articles and which has been
defined by its founder as designed to help people to combat
boredom. Our hypotheses were that:

• H1: Mobile phone users are more likely to interact with
suggested content when bored (as inferred by our machine
learning algorithm), and
• H2: Mobile phone users spend more time interacting with

suggested content when bored (as inferred by our algo-
rithm).



Methodology
Participants
For this validation study, we recruited 16 participants who
were different from the participants in the first study. They
were recruited through a large mailing list of volunteers to
participate in research studies. They installed Borapp2, an
updated version of Borapp, on their Android phones. Their
ages ranged from 16 to 51 (Mdn = 39, M = 36.31, S D =
9.37). According to their locales and the time zones reported
by the phones, the large majority of the participants were
Spanish speakers living in Central Europe. Note that none of
these participants had participated in the first Borapp study.

Apparatus
To infer boredom, Borapp2 implements an online boredom
detection module. It computes the previously described fea-
tures on-the-fly and feeds them into an online instance of the
RF classifier. The classifier is trained with the data obtained
in the first Borapp study, described in the previous section.

Instead of experience-sampling probes, Borapp2 creates noti-
fications that suggests to open the Buzzfeed6 news app. Buz-
zfeed describes itself as providing “the most shareable break-
ing news, original reporting, entertainment, and video across
the social web”7. As shown in Figure 5, the notification
showed the title of the most recent article and suggested the
user to click-to-read. We chose the Buzzfeed app as sug-
gested content, because (1) the app caches articles, so that
the study did not rely on permanent availability of an internet
connection, and (2) its content is designed to be interesting to
a broad audience.

Figure 5. Example of a notification suggesting to visit the Buzzfeed app.

Whenever the user turned on the screen, Borapp2 tested a
number of conditions, such as whether a notification was al-
ready scheduled or whether enough time (30 minutes) had
passed since the last notification. When those conditions were
satisfied, the app scheduled a notification with a delay ranged
from 10 sec - 5 min. At the end of this interval, the classi-
fier was run to estimate whether the user was bored or not.
When the user was detected to be bored, the notification was
posted. If the classification result was the opposite, the notifi-
cation was posted in only 1 out of 9 cases. Through empirical
analysis during the testing phase, we found that this roughly
yielded the same amount of notifications for each of the two
boredom conditions (bored and non-bored). The notifications
disappeared if they remained ignored by the user for more
than 5 minutes.
6www.buzzfeed.com
7http://www.buzzfeed.com/about

Design
The online detection of boredom served as independent vari-
able with two values: bored and normal. The bored value
served as experimental condition, whereas the normal value
was the control condition. We used repeated-measures de-
sign, i.e., participants would be exposed to notifications in
both conditions. Since the inferred emotional state cannot be
specified by the researcher, the study has to be considered as
quasi-experiment rather than a truly randomized controlled
trial.

The participants’ reaction to the notification was used as de-
pendent measure. We computed two scores:

• Click-ratio: which is defined as the number of notifica-
tions clicked in a condition divided by the total number of
notifications presented in this condition. This score was
designed to validate hypothesis 1.
• Engagement-ratio: which is defined as click-ratio, but in

addition to clicking the notification, Buzzfeed also had to
be kept open for at least 30 seconds. This score was de-
signed to validate hypothesis 2.

Procedure
The procedure to join and set up the study was similar to the
procedure in the first study. Participants installed Borapp2
from Google Play. The app then walked the participants
through the informed consent and the setup steps, including
the installation of the Buzzfeed app. Each participant had
to keep Borapp2 actively running for at least 14 days. Af-
terwards, we collected the participants’ basic demographics
with a questionnaire and debriefed participants. As reward,
we conducted a raffle of one 300 EUR gift certificate of a
large online retailer.

Results
Many of our participants had not used Buzzfeed before. To
make sure that no novelty bias would affect our results, we
removed the first 2 days of the data.

Over the remaining 12 days, our participants received 941
notifications (M = 60.81, S D = 38.27) suggesting to open a
piece of content from Buzzfeed. Our participants were pre-
dicted to be bored by our algorithm in 48.0% of the cases.

A Shapiro-Wilk test showed that neither of the scores were
normally distributed, hence results were analyzed using non-
parametric statistics. We used the median as measure of cen-
tral tendency, the median absolute deviation (MAD) as re-
placement for the standard deviation, and the 4th and 13th
rank as approximation of the 95% confidence interval, follow-
ing the procedure described in [35]. Significance was tested
by using the Wilcoxon-Signed Rank Test.

Click-ratio (H1)
Figure 6 shows the average click-ratio per condition. In the
bored condition, individual click-ratio scores ranged from 0%
to 71% (Mdn = 20.5, MAD = 13, Q = 8.25 − 31.5, CI95 =
6− 42). In the normal condition, individual click-ratio scores
ranged from 0% to 45% (Mdn = 8, MAD = 8, Q = 1.5 − 21,
CI95 = 0 − 30). The difference is statistically significant (z =
−2.102,p = .018) and the effect size large (r = -.543).
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Figure 6. Click-ratio per condition.

Engagement-ratio (H2)
Figure 7 shows the average engagement-ratio per condition.
In the bored condition, individual engagement-ratio scores
ranged from 0% to 66% (Mdn = 15, MAD = 12, Q = 3.5 −
21.25, CI95 = 2 − 31). In the normal condition, individual
engagement-ratio scores ranged from 0% to 34% (Mdn = 4,
MAD = 4, Q = 0−10, CI95 = 0−10). Again, the difference is
statistically significant (z = −2.102,p = .018) and the effect
size large (r = -.511).
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Figure 7. Engagement-ratio per condition.

This evidence supports both hypotheses. Participants were
more likely to open Buzzfeed (H1) and engage with it (H2)
when they were predicted to be bored by the model. We found
strong effect sizes for both dependent measures.

DISCUSSION
Our two field studies provide empirical evidence that (1) it is
possible to infer boredom from phone usage patterns with ac-
ceptable accuracy; (2) boredom is related to communication
activity, usage intensity, hour of the day, and demographics;
and (3) mobile phone users are more likely to engage with
suggested content when they are predicted to be bored.

RQ1: Inferring Boredom
The data from our first field study with 54 participants shows
that it is possible to create a machine-learning model to au-
tomatically detect when people are bored while using their
phone.

We tested the impact of two additional factors. First, the
ground truth being normalized vs. absolute self-report scores.

Second, including a boredom proneness score obtained via a
validated questionnaire.

The performances of the machine learning models range from
74.6% AUCROC for the primary data set with normalized
ground truth and no boredom proneness to 82.9% AUCROC
for the data set with absolute ground truth and boredom
proneness. When tuning to a recall of 50%, a model trained
with the primary data set achieves a precision of 62.4% for
the bored class.

Performance was consistently higher for the absolute ground
truth. Our interpretation is that the definition of absolute bore-
dom is more agreed upon and it seems that the level of bore-
dom needs to be higher in order to agree with a statement
of feeling bored. Normalized boredom, while harder to infer,
reflects the fact that everybody has a different boredom prone-
ness, hence, a different reference point for boredom. While
using normalized boredom makes boredom detection less ac-
curate, it allows to also detect when people slightly deviate
from their baseline state towards boredom, even if they would
not wholeheartedly agree to the statement ‘I feel bored’.

Including boredom proneness scores had only slight effects
on the models’ accuracies. It decreased the variance for both
ground truths, which means that it helped to make the models
more stable. However, the effect was not as pronounced as by
Biller and D’Mello [3]. A reason might be that our analysis
relies on scores from only 22 (40.7%) participants. However,
recent related work shows that boredom proneness does not
necessarily have to be collected via self-reports, but that it can
be estimated from daily mobile phone usage patterns [24].

Limitations arise from the fact that the study took place in-
the-wild in an unsupervised setting. These studies trade the
ability to control for ecological validity. Our participants
were free to dismiss probes as long as they responded to 84 in
total. This may create some bias, as we had no control over
when our participants dismissed probes. They might have dis-
missed more probes when they were deeply engaged or busy
with other things. Hence, in particular the results with the
absolute ground truth might emphasize on events where the
user is bored.

Yet, the accuracy of the models are significant. Previous
works that used a similar approach to detect daily happiness
[5] or daily stress levels [4] from mobile phone use, where
not able to achieve acceptable prediction accuracy from mo-
bile phone use data alone. They had to include personality
traits and weather information. This comparison indicates
how closely interwoven boredom and mobile phone use have
become.

RQ2: Strong Indicators of Boredom
The features identified as the strongest indicators of boredom
were related to five aspects: the recency of communication
activity, the intensity of recent usage, general usage intensity,
the context (hour of the day and proximity sensor), and basic
demographics.

Boredom correlated with more time having passed since the
last incoming communication, and less time passed since the



user last initiated outgoing communication via calls, SMS,
and messages. This finding suggests that being contacted by
others is generally correlated with being less bored. Con-
tacting others, however, is more likely to happen while being
bored.

Boredom further correlated with the intensity of mobile
phone use. In general, we found that the higher the usage
intensity, the higher the boredom. This confirms observations
in previous work [7, 25] that people use their mobile phones
when bored to kill time. Our work advances these previous
findings by providing empirical evidence that this increase in
usage contributes to the detection of boredom or phases of
killing time.

Furthermore, boredom positively correlated with the time of
the day and darker ambient lighting conditions. This finding
means that there are boredom levels vary throughout the day,
as shown in [23]. Moreover, in contrast to Mark et al. [23]
who found that boredom is lower during late working hours,
our results include after-work hours, and indicate that bore-
dom tends to increase as the day progresses.

Finally, boredom correlated with demographics. Boredom
tended to be higher for male participants, and higher for par-
ticipants in their 20s and 40s and lower in their 30s. This
findings are in line with previous work which found that age
[36] and gender [2] are significant predictors of experiencing
boredom in leisure time.

One limitation here is that our analysis exclusively yields cor-
relational results. While these allow to learn which usage pat-
terns co-occur with boredom and allow inferences, we cannot
establish a causal relationship between predictive usage pat-
terns and boredom.

Yet, not all of the most important features are related to ac-
tually using the phone. We also learn that contextual factors,
such as the time of the day, and demographics play a role.

RQ3: Boredom and Consumption of Suggested Content
The main motivator for our second field study was to an-
swer our third research question: are people more open to
suggested activities and content when bored? The study pro-
vides evidence to answer this question affirmatively: our par-
ticipants were significantly more likely to open and engage
with suggested content on their mobile phones when our al-
gorithms predicted them to be bored.

The interpretation of these findings has to take important fac-
tors into account. First, the user study was not a true exper-
iment, but a quasi-experiment, since the conditions of being
bored or not could not be randomly assigned but occurred nat-
urally. Second, the tested sample was rather small and some-
what biased (by self-selection). Third, the conditions were
not pure given the error rate of the boredom inference algo-
rithm ( 40% as per the results of the first user study). Hence,
the findings should be regarded as preliminary.

The interesting aspect is that the notification we posted was
not related to any communication activity. Our previous work
[29, 32] shows that mobile phone users find notifications from
communication apps (messengers, email, social networks) to

be important, while notifications from other types of apps are
largely being ignored and at times even perceived as annoy-
ing.

Thus, these findings are significant, as they show that
automatically-detected boredom may be an ideal way to deal
with peoples’ increasingly scarce attention. We envision it’s
application in boredom-triggered proactive recommendations
[28], an approach to increase the success rates of proactive
recommendations regardless of the content.

CONCLUSIONS
In this paper, we have proposed a machine learning method to
automatically infer boredom from mobile phone usage, con-
text and demographics. In an in-the-wild study with 54 par-
ticipants, our models have reached accuracies ranging from
74.6 to 82.9% AUCROC. We have also studied the most pre-
dictive features and found that recency of communication,
usage intensity, time of the day, and demographics are the
categories of features with the highest discrimination power.
Furthermore, in a second in-the-wild study we have found
that users are more likely to engage with suggested content
on their phones when they are bored.

We believe that boredom-triggered proactive recommenda-
tions open the way towards the design mobile recommender
systems that have a better understanding of when and how
engage with their users. Potential application scenarios we
envision are:

(1) Engage with their users by providing interesting sug-
gestions (e.g. videos, activities, contacting friends) in mo-
ments of boredom;

(2) suggest useful but not necessarily boredom-curing ac-
tivities (e.g. clear the backlog of a todo or read-later list)
instead of lackluster killing time activities; and

(3) help to make positive use of boredom by fosting intro-
spection, reflection, and creativity.

While this work has provided first evidence that notifica-
tions delivered during phases of inferred boredom can drive
engagement with an entertaining news website, future work
needs to be carried out in order to provide stronger statistical
proof that this effect can be observed in different settings as
well. In addition, we plan to carry out future work on how to
intervene in-situ when mobile phone users are detected to be
bored, including the exploration of points (2) and (3) above.
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