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Abstract

This paper proposes a new family of Hid-
den Markov Models (HMMs) named Mutual
Information Hidden Markov Models (MIH-
MMs). MIHMMs have the same graphical
structure as HMMs. However, the objective
function being optimized is not the joint like-
lihood of the observations and the hidden
states. It is a convex combination of the mu-
tual information between the hidden states
and the observations, and the likelihood of
the observations and the states. First, we
present both theoretical and practical mo-
tivations for having such an objective func-
tion. Next, we derive the parameter estima-
tion (learning) equations for both the discrete
and continuous observation cases. Finally,
we illustrate the superiority of our approach
in different classification tasks by compar-
ing the classification performance of our pro-
posed Mutual Information HMMs with stan-
dard Maximum Likelihood HMMs, in the
case of synthetic and real, discrete and con-
tinuous, supervised and unsupervised data.
We believe that MTHMMs are a powerful tool
to solve many of the problems associated with
HMMs when used for classification and/or
clustering.

1. Introduction

It has been claimed (Tishby et al., 1999) that a fun-
damental problem in formalizing our intuitive ideas
about information is to provide a quantitative notion
of “meaningful” or “relevant” information. These is-
sues were missing in the original formulation of in-
formation theory, where the attention was focused on
the problem of transmitting information rather than
evaluating its value to the recipient. Information the-
ory has therefore traditionally been seen as a theory
of communication. However, in recent years there
has been growing interest in applying information the-
oretic principles in machine learning and statistics

(Cover & Thomas, 1991). It has been argued that
information theory provides a natural quantitative ap-
proach to the question of “relevant” information.

There are many situations when we would like to com-
press or summarize dynamic time data (for example
speech or video). One possible approach to solving
that problem is having an additional “hidden” vari-
able that determines what is relevant. In the case of
speech, for example, it could be the transcription of
the signal, if we are interested in the speech recog-
nition problem, or it might be the speaker’s identity
if speaker identification is our goal. The formal un-
derlying structure of such problems would consist of
extracting the information from one variable that is
relevant for the prediction of another variable.

In this paper we propose an approach for using in-
formation theory in the framework of Hidden Markov
Models (HMMs), by enforcing the hidden state vari-
ables to capture relevant information about the obser-
vations. At the same time, we would like our models
to explain the generative process of the data as accu-
rately as possible. Therefore, we propose an objective
function that combines both the information theoretic
and the maximum likelihood (ML) criteria.

The paper is organized as follows: First, in Section 2
we review the most relevant previous work. Section 3
motivates and describes the proposed objective func-
tion to be maximized. The learning algorithms that
estimate the parameters of the model (in the discrete
and continuous, supervised and unsupervised cases)
while optimizing such function is presented in Section
4. Experimental results are presented in Section 6.
Finally, we summarize our work and discuss future di-
rections of research in Section 7.

2. Previous Work

In this work we introduce a new algorithm for pa-
rameter estimation in Hidden Markov Models. Nu-
merous variations of the standard formulation of Hid-
den Markov Models have been proposed in the past,
such as Entropic-HMM (Brand & Kettnaker, 2000),



Variable-length HMM (Galata et al., 2001), Coupled-
HMM (Brand et al., 1997; Oliver, 2000), Input-
Output-HMM (Bengio & Frasconi, 1995), Factorial-
HMM (Ghahramani & Jordan, 1996) and Hidden-
Markov Decision Trees (Jordan et al., 1996), to name
a few. Each of these approaches attempts to solve
some of the deficiencies of standard HMMs given the
particular problem or set of problems at hand. Most
of them aim at modeling the data and learning the
parameters using ML. In many cases their main differ-
ences lie in the conditional independence assumptions
made while modeling the data, i.e. in their graphi-
cal structure. Conversely, the graphical structure of
the model presented in this paper remains the same as
that of a standard HMM, but the objective function is
different. Note that although our analysis in this pa-
per focuses soley on HMMs, the framework proposed
here could be generalized to other graphical models
(Buntine, 1994).

Tishby’s et al. work on the Information Bottleneck
(Tishby et al., 1999) method and its extensions has
been one of the sources of inspiration for our work.
The Information Bottleneck method is an unsuper-
vised non-parametric data organization technique.
Given a joint distribution P(A, B), the method con-
structs, using information theoretic principles, a new
variable T that extracts partitions, or clusters, over
the values of A that are informative about B. In par-
ticular, consider two random variables X and ) with
their joint distribution P(X,Q), where X is the vari-
able that we are trying to compress with respect to
the “relevant” variable (). They propose the introduc-
tion of a soft partitioning of X through an auxiliary
variable T', and the probabilistic mapping P(T|X),
such that the mutual information (MI) I(7', X) is min-
imized (maximum compression) while the relevant in-
formation I(7T, Q) is maximized.

A related approach is the “infomax criterion”, pro-
posed in the neural network community, where the goal
is to maximize the mutual information between the in-
put and the output variables in a neural network. The
biological relevance of miximizing the mutual informa-
tion is discussed in (Atick, 1992).

Our work is also related to the recently popular debate
of conditional versus joint density estimation (Caru-
ana et al., 1998). The “conditional” approach (i.e.
the maximization of the conditional likelihood of the
variables of interest instead of the joint likelihood) is
closely related to the use of discriminative approaches
in learning theory. Jebara nicely summarizes in (Je-
bara, 1998) the advantages and disadvantages asso-
ciated with joint and conditional density estimation.
Standard HMM algorithms perform joint density es-
timation of the hidden state and observation random
variables. However, in situations where the resources
are limited (complexity, data, structures), the system

has to handle very high dimensional spaces or when
the goal is to classify or cluster with the learned mod-
els, a conditional approach is probably superior to the
joint density approach. One can think of these two
methods (conditional vs joint) as two extremes with
our work providing a tradeoff between the two. Sec-
tions 3 and 5 analyze the properties of our approach
and relate it to the purely probabilistic model more
formally.

Finally, we would like to point out how our work is
different to the Maximum Mutual Information Es-
timation (MMIE) approach that is so popular in
the speech recognition community. In particular,
Bahl et al. (Bahl et al., 1986) introduced the concept
of Maximum Mutual Information Estimation (MMIE)
for estimating the parameters of an HMM in the con-
text of speech recognition, where typically a different
HMM is learned for each possible class (e.g. one HMM
for each word in the vocabulary). New waveforms are
classified by computing their likelihood based on each
of the models. The model with the highest likelihood is
selected as the winner. However, in our approach, we
learn a single HMM whose hidden states correspond
to the different classes. The algorithm in (Bahl et al.,
1986) attempts to maximize the mutual information
between the choice of the HMM and the observation
sequence to improve the discrimination across different
models. In contrast, our algorithm aims at maximiz-
ing the mutual information between the observations
and the hidden states, so as to minimize the classifi-
cation error when the hidden states are used as the
classification output.

3. Mutual Information, Bayes Optimal
Error, Entropy and Conditional
Probability

In the “generative approach” to machine learning, the
goal is to learn a probability distribution that defines
the process that generated the data. Such an approach
is particularly good at modeling the general form of
the data and can give some useful insights into the na-
ture of the original problem. Recently, there has been
an increasing focus on connecting the performance of
these generative models to their classification accuracy
when they are used for classification tasks. In par-
ticular, Garg and Roth develop an extensive analysis
in (Garg & Roth, 2001) of the relationship between
the Bayes optimal error! of a classification task us-
ing a probability distribution and the entropy between
the random variables of interest. Consider the family
of probability distributions over two random variables

!The Bayes optimal error is the error of a Bayes classi-
fier. In the case of two equally probably classes, i.e. P(y =
1) = P(y = 0) = .5, it is given by e = 1Po({z|P.(z) >
Po(2)}) + Pi({a| Po(a) > Pi(x)})



(X, Q) denoted by P(X,Q). The classification task is
to predict @) after observing X. The relationship be-
tween the conditional entropy H(X|Q) and the Bayes
optimal error, €, is given by

%Hb(Qe) < H(X|Q) < Hy(e) + log % (1)

with Hy(p) = —(1 — p)log(1 — p) — plogp and M the
dimensionality of the data.

Bayes Optimal Error

1 15 2
Condional Entropy

Figure 1. Bayes optimal error versus conditional entropy

Figure 1 illustrates this relationship between the con-
ditional entropy and the Bayes optimal error. In
Figure 1 the only realizable —and at the same time
observable— distributions are those within the black re-
gion. One can conclude from Figure 1 that, if the data
is generated according to a distribution that has high
conditional entropy, the Bayes optimal error of any
classifier for this data will be high. Even though this
relationship is between the true model and the Bayes
optimal error, it could also be applied to a model that
has been estimated from data, —assuming a consistent
estimator has been used, such as Maximum Likelihood
(ML), and the model structure is the true one. As a
result, when the learned distribution has high condi-
tional entropy, it might not necessarily do well on clas-
sification. Therefore, if the final goal is classification,
Figure 1 suggests that low entropy models should be
preferred over high entropy ones. This result is related
to Fano’s inequality (Cover & Thomas, 1991): Suppose
we know a random variable () and we wish to guess
the value of a correlated random variable X . Fano’s in-
equality relates the probability of error in guessing the
random variable X to its conditional entropy H(X|Q).
In particular, the conditional entropy of a random vari-
able X given another random variable @ is zero if and
only if X is a function of (). Hence we can estimate X
from @) with zero probability of error if H(X|Q) = 0.
Extending this argument, we expect to be able to es-
timate X with a low probability of error only if the
conditional entropy H(X|Q) is small. Note that the
objective function proposed in Eqn 2 favors low con-
ditional entropy models to high entropy ones.

A Hidden Markov Model (HMM) is a probability dis-
tribution over a set of random variables, some of which
are referred to as the hidden states (as they are nor-
mally not observed and they are discrete) and others

are referred to as the observations (continuous or dis-
crete). Traditionally, the parameters of HMMs are es-
timated by maximizing the joint likelihood of the hid-
den states @) and the observations X, P(X, Q). Con-
ventional Maximum Likelihood techniques would be
optimal in the case of very large datasets (so that the
estimate of the parameters is correct) if the true distri-
bution of the data was in fact an HMM. However none
of the previous conditions is normally true in practice.
The HMM assumption might be in many occasions
highly unrealistic and the available data for training
is normally very limited, leading to important prob-
lems associated with the ML criterion (such as overfit-
ting). Moreover, ML estimated models are often used
for clustering or classification. In these cases, the eval-
uation function is different to the objective function,
which suggests the need of an objective function that
correctly models the problem at hand. The objective
function defined in Eqn 2 is designed to tackle some of
these problems associated to ML estimation.

When formulating our objective function, we were in-
spired by the relationship between the conditional en-
tropy of the data and the Bayes optimal error, as pre-
viously described. In the case of HMMs, the X vari-
able corresponds to the observations and the () vari-
able to the hidden states. We would like to choose
P(Q, X) such that the likelihood of the observed data
is maximized while forcing the @) variable to contain
maximum information about the X variable (i.e. to
maximize their mutual information or minimize the
conditional entropy). In consequence, we propose to
maximize a function that trades-off the joint likelihood
and the mutual information (Cover & Thomas, 1991)
between the hidden variables and the observations, pa-
rameterized by a. This leads to the following function
to maximize?

F = (]. — CM)I(Q,X) + alogP(Xobsa Qobs) (2)

where a € [0,1], provides a way of deciding the ap-
propriate weighting between the Maximum Likelihood
(e = 1) and Maximum Mutual Information (MMI)
(o = 0) criteria, and I(Q,X) refers to the mutual
information between the states and the observations.
However, very often one does not observe the state
sequence®. In such a scenario, the objective function

reduces to
F=(1-a)I@QX)+alogP(Xp)  (3)

The mutual information I(Q, X) is the reduction in
the uncertainty of @ due to the knowledge of X.

2To make more clear the distinction between “observed”
(supervised) and “unobserved” (unsupervised) variables,
we will use the underscript (.)ops to denote that the vari-
ables have been observed, i.e. X, s for the observations
and Q,ps for the states.

3We will refer to this case as the unsupervised case while
referring to the former as the supervised case.



The mutual information is also related to the KIL-
distance or relative entropy between two distribu-
tions P(X) and P(Q). In particular, 1(Q,X) =
KL(P(Q,X)||P(X)P(Q)), i.e. the mutual informa-
tion between X and () is the KL-distance between
the joint distribution and the factored distribution.
It is therefore a measure of how conditionally depen-
dent the two random variables are. The objective
function proposed in Eqn 2 penalizes factored distri-
butions, favoring distributions where @ and X are
mutually dependent. This is in accordance with the
graphical structure of an HMM where the observa-
tions are conditionally dependent on the states, i.e.

P(X,Q) = P(Q)P(X|Q).

Mutual information is also closely related to condi-
tional likelihood. Learning the parameters of a graph-
ical model (Buntine, 1994) is equivalent to learning the
conditional dependencies between the variables (edges
in the graphical model). The following theorem by
Bilmes et al. (Bilmes, 2000) makes explicit the re-
lationship between conditional likelihood and mutual
information in graphical models:

Theorem 1 Mutual Information and Likelihood
Given three random variables X, Q® and Q°, where
I(Q*, X) > I(Q% X), there is an ng such that if n >
no, then P(X™|Q%) > P(X"|QY).

This theorem also holds true for conditional mutual
information, such as I(X,Z|Q), or for a particular
value of ¢, I(X, Z|Q = q). Therefore, given a graph-
ical model in general (and an HMM in particular)
whose parameters have been learned by maximizing
the joint likelihood P (X, @), if we were to add some
edges according to maximum mutual information the
resulting graphical model would yield higher condi-
tional likelihood score than before the modification
(Bilmes, 2000). In an HMM we are maximizing the
joint likelihood of the hidden states and the observa-
tions, P(X,Q@). At the same time, when using the
HMM for classification, it would be desirable to make
sure that the states () are good predictors of the ob-
servations X. According to Theorem 1, maximizing
the mutual information between states and observa-
tions would increase the conditional likelihood of the
observations given the states P(X|Q). This justifies,
to some extent, why the objective function defined
in Eqn 2 combines the two desirable properties of max-
imizing the mutual information and joint likelihood of
the states and the observations.

4. MIHMMs

We develop in this section the learning algorithms for
discrete and continuous, supervised and unsupervised
MIHMMSs. For the sake of clarity and simplicity, we
will start with the supervised case, where the “hidden”
states are actually observed in the training data.

Consider an HMM with Q as the states and X as the
observations. Let F' denote the function to maximize,

F=(01-a)lQ,X)+ alog P(Xss; Qobs). The mu-
tual information term I(Q),X) can be expressed as
I(Q,X)=H(X)— H(X/Q), where H(-) refers to the
entropy. Since H(X) is independent of the choice of
the model and is characteristic of the generative pro-
cess, our objective function reduces to

F=—-(1-a)H(X/Q)+alog P(Xobs, Qoss) = (1—a) Fi+aF

In the following we will use the standard HMM nota-
tion for the transition a;; and observation b;; proba-
bilities,

aij = Pq+1 = jlae = 1), bij = P(z¢ = jlg: =)

Expanding each of the terms F; and F; separately we
obtain,
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Combining F; and F5> and adding the appropriate La-
grange multipliers to ensure that the a;; and b;; coef-
ficients sum to 1, we obtain:

T M N
Fro = (1—=a)) > > P(g =i)bi;logby; (4)
t=1 j=1 i=1
T
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Note that in the case of continuous observation HMMs,
we can no longer use the concept of entropy as previ-
ously defined, but its counterpart differential entropy.
Because of this important distinction, we will carry
out the analysis for discrete and continuous observa-
tion HMMs separately.

4.1 Discrete MIHMMs

To obtain the parameters that maximize the function,
we take the derivative of F7, from Eqn 4 and will equate

ZP z = jlg: = 1) P(q = i) log P(z¢ = jlg: = i)



OFT, b

it to zero. First solving for b;;, we obtain
i =0
b =

= (1—a)(1+log bij) (ZP qt—z> ]\;)
(5)

where N{’j is the number of times one observes state
J when the hidden state is i. Eqn 5 can be expressed
as

Wi;
logb;; + — by L 49 4+1=0 (6)
where
Nba
(1-a) (Ti Pla =)
Vi

9i =

T ;
(1-a) (X1, Pla=1))
The solution of Eqn 6 is given by

bii = —
“ LambertW (—W;el+8)

where LambertW(x) =y is the solution of ye¥ = z.

Now we are going to solve for a;;. Let’s first look at
the derivative of F| with respect to aym,

T M N
88651 DD D bijloghy—pg — ( =9
mo =1 j=1i=1

To solve the above equation, we need to compute

%f:i), which can be computed using the following

iteration

P(g=1) _ ) X 7ap(§ili_j)aji if m # 4,
daim E]. %ﬁ_”aﬁ + P(qt71 = l) ifm=1
(M)

with the initial conditions

OP(q2 = 1) :{ 0 if m #1,

aalm ™ ifm=1

Taking the derivative of Fy, with respect to a;m,, we
obtain,

T N M N
zzzﬁmk e
t=1 i=1 k=1

6alm Alm

where Ny, is the count of the number of occurrences of
qi—1 = l,qs = m in the data set. The update equation
for a;,, 1s obtained by equating this quantity to zero
and solving for a;,

_aNlm

(1-a) ZtT:I vazl Ziwzl bir log bi, %;:i) + B
(8)

Am =

where f; is chosen so that ) a;m = 1, VL.

4.2 Continuous MIHMMs

For the sake of clarity, we will restrict our attention to
the case when the P(z|q) is a single Gaussian®. Un-
der this assumption, the HMM is characterized by the
following parameters

P(g: = jlai—1 = 1) = ayj

. 1 1 Tw—1
P(zi|qr = 1) = ———=exp(—z(xt — i) 5; (¢ — s
(zelge = 1) ] (=5 (@ ) (z¢ )

where X; is the covariance matrix when the hidden
state is ¢ and |X;| is the determinant of the covariance
matrix. Now, for the objective function given in Eqn 2,
F1 and F5 can be written as

F = —H(X|Q)
= Z/P( = 1) log P(x¢|q: = 1)dP(z¢|q: = 1)
= L3 ra= [gesens)

— 5 e = )57 (e = ) APl = i)y
= 23X Pla =iz losrli) - )
F = IOgP(QobSaXobs)

T T
> log P(xilgr) +logmey + ) logagy |
t=1 t=2

Following the same steps as for the discrete case, we
again form the Lagrange FJ, take its derivative with
respect to each of the unknown parameters and obtain
the corresponding update equations. First the means
of the Gaussians

ZT
p; = =L Tt
(] ]\7Z

where N; is the number of times ¢; = 7 in the observed
data. Note that this is the standard update equation
for the mean of a Gaussian, and it is the same as for
ML estimation in HMMs. This is because the condi-
tional entropy is independent of the mean.

Next, the update equation for a;, is same as
in Eqn 8 except for replacing -, bixlogby by
—%.log(27r|2i|) — 1. Finally, the update equation for
Y, is
T
e At ) it pi) " ©)
’ N+ CZ S Plar = i)

“We could extend our reasoning to other distributions
and in particular to other members of the exponential
family.




It is interesting to note that Eqn 9 is very similar to the
one obtained when using ML estimation, except for the
term in the denominator (1;')‘) Zthl P(g = i), which
can be thought of as a regularization term. Because
of this positive term, the covariance X; is smaller than
what it would have been otherwise. This corresponds

to lower conditional entropy, as desired.

4.3 Unsupervised Case

The above analysis can easily be extended to the unsu-
pervised case, i.e. when only X5 is given and Qyps is
not available. In this case, we use the objective func-
tion given in Eqn 3. The update equations for the
parameters are very similar to those obtained in the
supervised case. The only difference is that now we re-

place N;; in Eqn 5 by Zlemzj P(q = | Xobs)s Nim
is replaced in Eqn 8 by 25:2 P(gt—1=1,qt = m|Xops),
and N; is replaced in Eqn 9 by Zthl P(g = 1| Xops)-
These quantities can be easily computed using the

Baum-Welch algorithm by means of the forward and
backward variables.

5. Discussion
5.1 Convexity

From the asymptotic equipartition property (Cover &
Thomas, 1991), it is known that, in the limit (i.e. as
the number of samples approaches infinity), the likeli-
hood of the data tends to the negative of the entropy,
P(X) ~ —H(X). Therefore and in the limit, the neg-
ative of our objective function for the supervised case
can be expressed as

—F=(1-a)HX|Q)+aH(X,Q)= H(X|Q) + aH((%)
Note that H(X|Q) is a strictly concave function of
P(X|Q), and H(X|Q) is a linear function of P(Q).
Consequently, in the limit, the objective function
from Eqn 10 is strictly convex (its negative is concave)
with respect to the distributions of interest.

In the unsupervised case and in the limit again, our
objective function can be expressed as

F = —(1-a)H(X|Q) - aH(X)
= —HX)+(1-a)(H(X)-H(X|Q))

= —HX)+(1-a)l(Q X)~ P(X)+(1-a)I(Q,X)

The unsupervised case thus reduces to the original
case with a replaced by 1 — @. Maximizing F' is, in
the limit, the same as maximizing the likelihood of the
data and the mutual information between the hidden
and the observed states, as expected. The above anal-
ysis shows that in the asymptotic case, the objective
function is strictly convex and as such a unique solu-
tion exists. However, in the case of finite amount of
data, local maxima could be a problem (as has been
observed in case of standard ML for HMM). We have
not observed a severe local maxima problem in any of
our experiments.

5.2 Convergence

We will discuss next the convergence of the MIHMM
learning algorithm in the supervised and unsupervised
cases. In the supervised case, the HMM parameters
are directly learned without any iteration. However,
we do not have a closed form solution for estimating
the parameters (b;; and a;;) in MIHMMs. These pa-
rameters are inter-dependent (i.e. in order to compute
bij, we need to compute P(q; = %), which requires
the knowledge of a;;). Therefore an iterative solution
is needed. Fortunately, the convergence of the itera-
tive algorithm is extremely fast, as Figure 2 illustrates.
This figure shows the objective function with respect
to the iterations for a particular case of the speaker
detection problem (a) (see Section 6), and for synthet-
ically generated data in an unsupervised situation (b).
From Figure 2 it can be seen that the algorithm typi-
cally converges after a few (5-6) iterations.

Cost Function

2 4 6 8 10 12 14 16 18 2

Iterations.

(b)

0 B B 7
teration Number

(a)

Figure 2. Objective function with respect to the iteration
number in (a) the speaker detection experiment; (b) a con-
tinuous unsupervised case with synthetic data.

5.3 Computational Complexity

The MIHMM algorithms proposed in this paper are
computationally more expensive than standard ML es-
timation in HMMs. The main additional complexity is
due to the computation of the derivative of probabil-
ity of state with respect to the transition probabilities,

%;m:’) in Eqn. 7. Let us consider an HMM with
N states and M observation values —or dimensions in
the continuous case— and sequences of length 7. The
complexity of Eqn. 7 in MIHMMs is O(T'N*). Besides
this term, the computation of a;; adds TN? compu-
tations. The computation of b;; (i.e. the observation
probabilities) requires solving for the Lambert func-
tion, which is done iteratively. However, this normally
requires a small number of iterations that we will ig-
nore in this analysis. Consequently, the computational
complexity for the discrete supervised case for MIH-
MMs is O(TN*+T N M). In contrast, ML for HMMs is
O(TN2?+TNM). In the unsupervised case, the counts
are replaced by probabilities, which can be estimated
using the forward-backward algorithm and whose com-

i.€.



putation is of the order of O(TN?). Hence the overall
order remains the same. Note that there is an addi-
tional incurred penalty because of the cross-validation
computations to estimate the optimal value of a. How-
ever, if the number of cross-validation rounds and the
number of a’s tried are fixed, the order remains same
even though the actual numbers will increase.

A similar analysis for the continuous case reveals that,
when compared to standard HMM, the additional cost
is O(TN*). Once the parameters have been learned,
inference is carried out in exactly the same fashion and
with the same complexity as with HMMs.

6. Experimental Results

In this section we describe the set of experiments that
we carried out to obtain quantitative measures of the
performance of MIHMMs when compared to standard
HMMs in various classification tasks. We conducted
experiments with synthetic and real, discrete and con-
tinuous, supervised and unsupervised data. In all the
experiments, the optimal value for alpha, a,ptimal, was
estimated using k-fold cross-validation (Kohavi, 1995)
on a validation set. In our experiments k was either
10 or 12. We randomly divided the given dataset into
two groups, one for training D" and the other for test-
ing D¥. The size of the test dataset was typically
20— 50% of the training dataset. For crossvalidation —
to choose the best a— the training set D" was furhter
subdivided into k mutually exclusive subsets (folds)
Dir, DL, ..., Di" of the same size (1/k of the training
data size). The models were trained k times; each time
t € {1,...,k} we trained on D"\ D!" and tested on D!".
We chose the alpha, agptimar, that provided the best
performance and used it on the testing data D¢.

1. Synthetic Discrete Supervised Data:

We generated a 10 datasets of randomly sampled syn-
thetic discrete data with 3 hidden states, 3 observa-
tion values and random additive observation noise.
We used 120 samples per dataset for training, 120 per
dataset for testing and 10-fold crossvalidation to esti-
mate a. The training was supervised for both HMMs
and MIHMMs. MIHMMs had an average improve-
ment over the 10 datasets of 11%, when compared to
HMMs of exactly the same structure. The aoptimar
was 0.5°. The mean classification error over the ten
datasets for HMMs and MIHMMs with respect to « is
depicted in Figure 3 (a). A summary of the mean ac-
curacies of HMMs and MIHMMs is shown in Table 1.

2. Speaker Detection:

An estimate of the person’s state is important for the
reliable functioning of any interface that uses speech
communication. In particular, detecting when users

*Note that from the cross-validation results, any alpha
in [.3 .8] would be equally acceptable. Among all these
values, we chose 0.5.

are speaking is a central component of open mike
speech-based user interfaces, specially given their need
to handle multiple people in noisy environments. We
carried out some experiments in a speaker detection
task. The speaker detection dataset was the same that
appears in (Garg et al., 2000). It consisted of five se-
quences of one user playing blackjack in a simulated
casino setup using CRL’s Smart Kiosk (Rehg et al.,
1997). The sequences were of varying duration from
2000 to 3000 samples, with a total of 12500 samples.
The original feature space had 32 dimensions that re-
sulted from quantizing five binary features (skin color
presence, face texture presence, mouth motion pres-
ence, audio silence presence and contextual informa-
tion). Only the 14 most significant dimensions were
selected out of the original 32-dimensional space.

The learning task in this case was supervised for both
HMMs and MIHMMs. Three were the variables of
interest: the presence/absence of a speaker, the pres-
ence/absence of a person facing frontally, and the exis-
tence/absence of an audio signal or not. The goal was
to identify the correct state out of four possible states:
(1) no speaker, no frontal, no audio; (2) no speaker, no
frontal and audio; (3) no speaker, frontal and no au-
dio; (4) speaker, frontal and audio. Figure 3 (b) illus-
trates the classification error for HMMs (dotted line)
and MIHMMs (solid line) with a varying from 0.05 to
0.95 in .1 increments. In this case, instead of display-
ing the results for the optimal «, Figure 3 (b) displays
the results for all a. Note how in this case MIHMMs
outperformed HMMs for all the values of a. The opti-
mal alpha using cross-validation was qoptimar = 0.75.
The accuracies of HMMs and MIHMMs are summa-
rized in table 1. The accuracy reported in (Garg et al.,
2000) using a bi-modal (audio and video) DBN was of
~ 80%.

Classification Error

o5 o5 o7 or oo o 01 02z 03 04 05 06 07 08 09
AAAAA Alpha

(a) (b)

Figure 3. (a) Mean Classification Errors with respect to
alpha for MIHMM and HMM (star-line) on Synthetic Dis-
crete Supervised data; (b) Error bars for the Speaker De-
tection data in MIHMMs and HMMs.

3. Gene Data: Gene identification and gene discov-
ery in new genomic sequences is an important compu-
tational question addressed by scientists working in the
domain of bioinformatics. In this example, we tested

1



Table 1. Classification accuracies for HMMs and MIHMMs
on different datasets

DATASET HMM MIHMM
SyNTDISC 3% 81%(toptimal = -5)
SPEAKERID  64%  88%(aoptimal = -75)
GENE 51%  61%(optimal = -35)
EMOTION 47%  58%(aoptimal = -49)

both HMMs and MIHMMSs in the analysis of part of
an annotated sequence (7000 data points on training
and 2000 on testing) of the Adh region in Drosophila
(Drosophila, 1999). The task was to annotate the se-
quence into exons and introns and compare the re-
sults with the ground truth. 10-fold cross-validation
was used to estimate the best value of «, which was
Qoptimal = 0.35. The improvement of MIHMMs over
HMDMs on the testing sequence was of about 19%, as
Table 1 reflects.

4. Real-time Emotion Data: Finally, we carried
out an emotion recognition task using the emotion
data described in (Cohen et al., 2000). The data had
been obtained from a video database of five people that
had been instructed to display facial expressions cor-
responding to the following six basic emotions: anger,
disgust, fear, happiness, sadness and surprise. The
data collection method is described in detail in (Cohen
et al., 2000). The database consisted of six sequences
of each facial expression for each of the five subjects. In
the experiments reported here, we used unsupervised
training of continuous HMMs and MIHMMs. We used
this time 12-fold cross-validation to select the optimal
value of a, which led to asptimar = 0.49. The mean
accuracies for both types of models are displayed in
Table 1.

7. Summary and Future Work

We have presented a new framework for estimating the
parameters of Hidden Markov Models. We have moti-
vated, proposed and justified a new objective function
that is a convex combination of the mutual informa-
tion and the likelihood of the hidden states and the
observations in an HMM. We have derived the param-
eter estimation equations in the discrete and contin-
uous, supervised and unsupervised cases. Finally, we
have shown the superiority of our approach in a clas-
sification task when compared to standard HMMs in
different synthetic and real datasets.

Future lines of research include automatic estimation
of the optimal «, extension of our approach to other
graphical models with different structures, and bet-
ter understanding of the connection between MIHMMs
and other information theoretic and discriminative ap-
proaches. We are also exploring how to apply our
framework to a number of applications and real-life
problems.
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