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Abstract

Intensive computations required for sensing and processing perceptual information
can impose significant burdens on personal computer systems. We explore several
policies for selective perception in SEER, a multimodal system for recognizing office
activity that relies on a layered Hidden Markov Model representation. We review
our efforts to employ expected-value-of-information (EVI) computations to limit
sensing and analysis in a context-sensitive manner. We discuss an implementation
of a one-step myopic EVI analysis and compare the results of using the myopic EVI
with a heuristic sensing policy that makes observations at different frequencies.
Both policies are then compared to a random perception policy, where sensors are
selected at random. Finally, we discuss the sensitivity of ideal perceptual actions
to preferences encoded in utility models about information value and the cost of
sensing.

Key words: Selective perception, expected value of information, automatic feature
selection, Hidden Markov models, office awareness, multi-modal interaction,
human behavior recognition

1 Introduction

Investigators have long been interested in the promise of performing auto-
matic recognition of human behavior and intentions from observations. Suc-
cessful recognition of human behavior enables compelling applications, in-
cluding automated visual surveillance and multimodal human–computer in-
teraction (HCI)—considering multiple streams of information about a user’s
behavior and the overall context of a situation to provide appropriate control
and services. There has been progress on multiple fronts in recognizing human
behavior and intentions. However, challenges remain for developing machinery
that can provide rich, human-centric notions of context in a tractable manner.
We address in this paper the computational burden associated with perceptual
analysis.

Computation for visual and acoustical analyses has typically required a large
portion –if not nearly all– of the total computational resources of personal
computers that make use of such perceptual inferences. It is not surprising to
find that there is little interest in invoking such perceptual services when they
require a substantial portion of the available CPU time, significantly slow-
ing down more primary applications that are supported or extended by the
perceptual apparatus. Thus, we have pursued coherent strategies for automat-
ically limiting in an automated manner the computational load of perceptual
systems.
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Our work centers on the control of perception in SEER, a probabilistic rea-
soning system that provides real-time interpretations of human activity in
and around an office [1]. We have explored two strategies for sensor selec-
tion and sensor data processing in SEER. The first approach is based on the
use of decision-theoretic principles to guide perception, where we compute
the expected value of information (EVI) of different subsets of observations
in real-time on a frame by frame basis. This is a greedy, one-step lookahead
approach to computing the next best set of observations to evaluate at each
time step. We refer to this strategy as EVI-based perception.

The second approach to limiting the computational burden of perception cen-
ters on defining heuristically policies by specifying observational frequencies
and duty cycles with which each feature extracted from the sensors is com-
puted. We name this approach rate-based perception.

We will compare the performance of the EVI-based and the rate-based percep-
tion methods with the legacy SEER system that analyzes all features all the
time (i.e. without selective perception), and with a random feature selection
perception approach, where the features are randomly selected at each time
step.

This paper is organized as follows: We first provide background on context-
sensing systems and principles for guiding perception in Section 2. In Section
3 we describe the challenge of understanding human activity in an office set-
ting and review the different perceptual inputs that are used. We also provide
background on the legacy SEER system, focusing on our work to extend a
single-layer implementation of HMMs into a more effective cascade of HMMs,
a representation that we refer to as Layered Hidden Markov Models (LHMMs).
Section 4 describes the three selective perception strategies that we have de-
veloped: EVI-based, rate-based and random-based perception. In Section 5 we
review the implementation of a new version of the SEER system that we refer
to as Selective SEER (S-SEER hereafter). Experimental results with the use
of S-SEER are presented in Section 6. Finally, we summarize our work and
highlight several future research directions in Section 7.

2 Prior Related Work

Human Activity Recognition

Most of the prior work on leveraging perceptual information to recognize hu-
man activities has centered on the identification of a specific type of activity
in a particular scenario. Many of these techniques are targeted at recogniz-
ing single, simple events, e.g., “waving the hand” or “sitting on a chair”.
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Only in recent years more effort has been applied to research on methods for
identifying more complex patterns of human behavior, extending over longer
periods of time. A significant portion of work in this arena has harnessed Hid-
den Markov Models (HMMs) [2] and extensions. Starner and Pentland in [3]
use HMMs for recognizing hand movements used to relay symbols in Ameri-
can Sign Language. More complex models, such as Parameterized-HMMs [4],
Entropic-HMMs [5], Variable-length HMMs [6], Coupled-HMMs [7], structured
HMMs [8] and context-free grammars [9] have been used to recognize more
complex activities such as the interaction between two people or cars on a
freeway.

Moving beyond the independence assumptions made by HMMs, over the
last several years more general dependency models, represented as dynamic
Bayesian networks have been adopted for the modeling and recognition of
human activities [10–15]. Finally, beyond recognizing specific gestures or pat-
terns the dynamic Bayesian network models have been used to make inferences
about the overall context of the situation of people. Recent work on proba-
bilistic models for reasoning about a user’s location, intentions, and focus of
attention have highlighted opportunities for building new kinds of applications
and services [16].

We have explored the use of a layering of probabilistic models at different
levels of temporal abstraction. We have shown that this representation al-
lows a system to learn and recognize in real-time common situations in office
settings [1]. Although the methods have performed well, a great deal of per-
ceptual processing has been required by the system, consuming most of the
resources available by personal computers. We have thus been motivated to
explore strategies for selecting on-the-fly the most informative features, start-
ing with the integration of decision-theoretic approaches to information value
for guiding perception.

Principles for Guiding Perception

Decision theory studies mathematical techniques for deciding between alterna-
tive courses of action. It provides an overall mathematical framework for rea-
soning about the net value of information [17]. Expected value of information
(EVI) refers to the expected value of making observations under uncertainty,
taking into consideration the probability distribution over values that will be
seen should an observation be made.

The connection between decision theory and perception received some atten-
tion by AI researchers studying computer vision tasks in the mid-70’s, but
interest faded for nearly a decade. Decision theory was used to model the
behavior of vision modules [18], to score plans of perceptual actions [19] and
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plans involving physical manipulation with the option of performing simple
visual tests [20]. This early work introduced decision-theoretic techniques to
the perceptual computing community.

Following this early research, was a second wave of interest in applying decision
theory in perceptual applications in the early 90’s, largely for computer vision
systems [21] and in particular in the area of active vision search tasks [22].

3 Toward Robust Context Sensing

Before focusing on the control of perceptual actions, we will discuss in more
detail the domain and original SEER office-awareness prototype. We will turn
to selective perception in Section 4.

A key challenge in inferring human-centric notions of context from multiple
sensors is the fusion of low-level streams of raw sensor data—for example,
acoustic and visual cues—into higher-level assessments of activity. We have
developed a probabilistic representation based on a tiered formulation of dy-
namic graphical models that we refer to as Layered Hidden Markov Models
(LHMMs) [1]. For recognizing office situations, we have explored the challenge
of fusing information from the following sensors:

1. Binaural microphones: Two mini-microphones (20− 16000 Hz, SNR 58
dB) capture ambient audio information and are used for sound classification
and localization. The audio signal is sampled at 44100 KHz.

2. Camera: A video signal is obtained via a standard Firewire camera, sam-
pled at 30 f.p.s, that is used to determine the number of persons present in
the scene.

3. Keyboard and mouse: We keep a history of keyboard and mouse activities
during the past 1, 5 and 60 seconds.

3.1 Hidden Markov Models (HMMs)

In early work on SEER we explored the use of single-layer hidden Markov mod-
els (HMMs) to reason about an overall office situation. Graphically, HMMs
are often depicted “rolled-out in time”, as displayed in Figure 1 (a). We found
that a single-layer HMM approach generated a large parameter space, requir-
ing substantial amounts of training data for a particular office or user. The
single-layer model did not perform well: the typical classification accuracies
were not high enough for a real application. Also, when the system was moved
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to a new office, copious retraining was typically necessary to adapt the model
to the specifics of the signals and/or user in the new setting. Thus, we sought
a representation that would be robust to typical variations within office envi-
ronments, such as changes of lighting and acoustics, and models that would
allow the system to perform well when transferred to new office spaces with
minimal tuning through retraining.

Fig. 1. Graphical representation of (a) HMMs, and (b) LHMMs with 3 different
levels of temporal granularity.

3.2 Layered Hidden Markov Models (LHMMs)

We converged on the use of a multilayer representation that reasons in parallel
at multiple temporal granularities, by capturing different levels of temporal
detail. We formulated a layered HMM (LHMM) representation that had the
ability to decompose the parameter space in a manner that reduced the train-
ing and tuning requirements. In LHMMs, each layer of the architecture is con-
nected to the next layer via its inferential results. The representation segments
the problem into distinct layers that operate at different temporal granular-
ities 1 —allowing for temporal abstractions from pointwise observations at
particular times into explanations over varying temporal intervals. LHMMs
can be regarded as a cascade of HMMs. The structure of a three-layer LHMM
is displayed in Figure 1 (b).

The layered formulation of LHMMs makes it feasible to decouple different
levels of analysis for training and inference. As we review in [1], each level of

1 The “time granularity” in this context corresponds to the window size or vector
length of the observation sequences in the HMMs.
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the hierarchy is trained independently, with different feature vectors and time
granularities. In consequence, the lowest, signal-analysis layer, that is most
sensitive to variations in the environment, can be retrained, while leaving the
higher-level layers unchanged. Figure 1(b) highlights how we decompose the
problem into layers with increasing time granularity.

4 Selective Perception Policies

Although the legacy SEER system performs well, it consumes a large portion of
the available CPU time to process video and audio sensor information to make
inferences. We integrated into SEER several methods for selecting features dy-
namically: EVI-based perception, based on calculations of the Expected Value
of Information (EVI); and rate-based perception, an observational frequency
approach. In experiments, we studied the performance of the system using
these methods as compared with the legacy SEER system, and with a random
perception approach, where features are randomly selected, frame by frame.

4.1 EVI for Selective Perception

We focused our efforts on implementing a principled, decision-theoretic ap-
proach for guiding perception. Thus, we worked to apply expected value of
information (EVI) to determine dynamically which features to extract from
sensors in different contexts. EVI policies for guiding sensing and computa-
tional analysis of sensory information promised to endow SEER with an ability
to limit computation with utility-directed information gathering.

The following properties of SEER and its problem domain are conductive to
implementing an EVI analysis: (1) a decision model is available that allows
the system to make decisions with incomplete information; (2) the decision
model can be used to determine the value of information for different sets
of variables used in the decision; (3) there are multiple information sources,
associated with different costs and response times; (4) the system operates
in a personal computing environment with limited resources (CPU, time):
gathering all the relevant information all the time before making the decision
is very expensive.

A critical issue is deciding which information to collect when there is a cost
associated with its collection. We compute the expected value of information
for a perceptual system by considering the value of eliminating uncertainty
about the state of the set of features fk, k = 1...K, under consideration. For
example, the features associated with the vision sensor (camera) are motion
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density, face density, foreground density and skin color density in the image.
There are K = 16 possible combinations of these features and we wish the
system to determine in real-time which combination of features to compute,
depending on the context 2 .

Perceptual Decisions Grounded in Models of Utility

We wish to guide the sensing actions with a consideration of their influence
on the global expected utility of the system’s performance under uncertainty.
Thus, we need to endow the perceptual system with knowledge about the
value of action in the world. In our initial work, we encoded utility as the cost
of misdiagnosis by the system. We assess utilities, U(Mi,Mj), as the value of
asserting that the real-world activity Mi is Mj. In any context, a maximal
utility is associated with the accurate assessment of Mj as Mj.

Uncertainty About the Outcome of Observations

Let us take fm
k ,m = 1...M to denote all possible values of the feature combi-

nation fk, and E to refer to all previous observational evidence. The expected
value (EV) of computing the feature combination fk is,

EV (fk) =
∑
m

P (fm
k |E)max

i

∑
j

P (Mj |E, fm
k )U(Mi, Mj) (1)

As we are uncertain about the value that the system will observe when it
evaluates fk, we consider the change in expected value associated with the
system’s overall output, given the current probability distribution of the dif-
ferent values m that would be obtained if the features in fk would in fact be
computed, P (fm

k |E).

The expected value (EVI) of evaluating a feature combination fk is the differ-
ence between the expected utility of the system’s best action when observing
the features in fk and not observing them, minus the cost of sensing and com-
puting such features, cost(fk). If the net expected value is positive, then it is
worth collecting the information and therefore computing the features.

EV I(fk) = EV (fk) − max
i

∑
j

P (Mj |E)U(Mi, Mj) − cost(fk) (2)

2 In the following we will refer to features instead of sensors, because one can
compute different features for each sensor input –e.g. skin density, face density,
motion density, etc, for the camera sensor.
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where cost(fk) is in our case the computational cost associated with computing
feature combination fk. Perceptual systems normally incur significant cost
with the computation of the features from the sensors. Thus, we trade the
information value of observations with the cost due to the analysis required to
make the observations. Note that all the terms in Equation 2 should have the
same units. Traditionally, EVI approaches convert all the terms to dollars. In
our case, we use a scale factor for the cost(fk).

Just as we can acquire detailed preferences about the value model, we can
assess preferences about the cost of computation in different settings. The
cost can be represented by a rich model that that continues to take into
consideration changes in the usage context. For a system like SEER, which
was designed to run in the background, monitoring the user’s daily activities
in the office, the cost of computation is significant when a user is engaged in a
resource-intensive primary computing task and is insignificant when the user
is not using the computer. Thus, as we show in Section 6.2, we can construct
an expected cost model that takes into consideration the likelihood that a
user will experience poor responsiveness because of the portion of CPU that
is being used by SEER.

Single and Multistep Analyses

For tractability, real-world applications of EVI typically employ a greedy ap-
proach, computing the next best observations at each step, making a false
assumption that the final system action will occur in the next step. Although
we similarly use a greedy strategy to compute the next best observations, we
extend typical EVI computations by reasoning about different combinations of
features, fk. In our analysis, the system selects the feature combination with
the greatest EVI, i.e. f ∗ = arg maxk EV I(fk).

As indicated by Equation 1, the computation of EVI, even in the case of
greedy analysis, requires for each piece of unobserved evidence, probabilistic
inference about the outcome of seeing the spectrum of alternate values should
that observation be computed. Thus, even one-step lookaheads can be com-
putationally costly. A variety of less-expensive approximations for EVI have
been explored [23,24]. As we show next, we exploit dynamic programming in
HMMs to achieve an efficient algorithm to determine the EVI associated with
each feature combination.

We follow an approach similar to other architectures, referred to as sequential
diagnosis, for interleaving the computation of beliefs and executing informa-
tion acquisition [25,26,24,27]; we embed the graphical model framework in an
architecture with two interconnected modules: the first module (probabilistic
module) specifies a graphical model and its associated algorithms for comput-
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ing probabilities and processing evidence. The second module (control module)
incorporates the method for selective gathering of evidence. Both modules co-
operate such that the control module queries the probabilistic module for
information about the variables of interest and decides on what computations
should be performed next by the probabilistic module.

EVI in HMMs

Our probabilistic modules are HMMs, with one HMM per class. In the case
of HMMs, with continuous observation sequences {O1, ..., Ot, Ot+1}, the term
P (fm

k |E) from Equation 1 is given by:

P (fm
k |E) =

∑
n

p(O
fm

k

t+1
|Mn)P (Mn) (3)

∝
∑

n

[
∑

s

αn
t (s)

∑
l

an
slb

n
l (O

fm
k

t+1
)]P (Mn)

where αn
t (s) is the alpha or forward variable at time t and state s in the

standard Baum-Welch algorithm [28], an
sl is the transition probability of going

from state s to state l, and bn
l (O

fm
k

t+1) is the probability of observing O
fm

k
t+1 in

state l, all of them in model Mn.

Therefore the EVI of features fk is given by 3 :

EV I(fk) =

∫
p(Ofk

t+1
)max

i

∑
j

U(Mi, Mj)p(Mj)dO
fk
t+1

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(Ofk

t+1
)

∝

∫ ∑
n

[
∑

s

αn
t (s)

∑
l

an
slb

n
l (Ofk

t+1
)]P (Mn)

max
i

∑
j

U(Mi, Mj)p(Mj)dO
fk
t+1

(4)

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(Ofk

t+1
)

If we discretize the observation space into M bins 4 , Equation 4 becomes:

3 For the sake of conciseness, we will drop hereafter the conditioning on the previous
evidence, E (observations in the HMMs case {O1...Ot}).
4 In S-SEER M is typically 10.
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EV I ∝

M∑
m=1

∑
n

[
∑

s

αn
t (s)

∑
l

an
slb

n
l (O

fm
k

t+1
)]P (Mn)

max
i

∑
j

U(Mi, Mj)p(Mj)

−max
i

∑
j

U(Mi, Mj)p(Mj) − cost(Ofk

t+1
) (5)

The computational overhead added to carry out the EVI analysis is –in the
discrete case– O(M ∗F ∗N2 ∗J), where M is the maximum cardinality of the
features, F is the number of feature combinations, N is the maximum number
of states in the HMMs and J is the number of HMMs.

4.2 Heuristic Rate-based Perception

In order to better understand the properties of the EVI approach, we have
developed alternative methods for selective perception. We explored, in a sec-
ond selective perception policy, a heuristic, rate-based approach. This policy
consists of defining an observational frequency and duty cycle (i.e. amount
of time during which the feature is computed) for each feature f . Figure 2
illustrates an example of different observational frequencies and duty cycles
for four features: audio classification, video classification (person presence),
sound localization and keyboard and mouse activities.

With this approach, each feature f is computed periodically. The period be-
tween observations and the duty cycle of the observation is determined by
means of cross-validation on a validation set of real-time data.

The rationale behind this rate-based perception strategy is based on the ob-
servation that not all the features are needed all the time: the system should
be able to make accurate inferences about the current activity with partial in-
formation about the current state of the world. For example, to identify that a
Presentation is taking place, the system heavily relies on the keyboard and
mouse activities and on the audio classification. The video classification and
sound localization features become less relevant. Therefore, instead of com-
puting all the features all the time, one could set a high frequency for the
computation of the audio and keyboard/mouse features, and a low frequency
for computing the video and sound localization. Because HMMs process the
data contained in a sliding window of length T , their inferences are robust to
some missing (non-observed) features in some of the data points of the sliding
window.
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OFF 
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Fig. 2. Example of observational frequencies and duty cycles for four features: au-
dio classification, video classification, sound localization and keyboard and mouse
activities.

Although we defined a heuristic rate-based policy, we note that a rate-based
formulation could be used within an EVI framework. That is, observational
rates and duty cycles for sensors can serve as control parameters optimized
with an EVI analysis at design time or in real-time. We are investigating the
development of an EVI-mediated, rate-based system.

4.3 Random Selection

For another baseline policy, we developed a simple random-selection method,
where features are selected randomly for use on a frame-by-frame basis. In this
case, the average computational cost of the system is constant, independent
of the current sensed activity, and lower than the cost of computing all of the
features all the time.

5 Implementation of S-SEER

S-SEER operates the same way as its predecessor, SEER, except in the avail-
ability of several selection perception policies. For clarity, we shall include a
brief summary of the core system and move onto the details of experiments
with selective perception in Section 6.

5.1 Core Learning and Inference

SEER consists of a two-level LHMM architecture with three processing layers.
For a more detailed description we direct the reader to [1].
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Feature Extraction in S-SEER

The raw sensor signals are preprocessed in S-SEER to obtain feature vectors
(i.e. observations) for the first layer of HMMs.

With respect to the audio analysis, Linear Predictive Coding coefficients [2]
are computed. Feature selection is applied to these coefficients via principal
component analysis. The number of features is selected such that at least 95%
of the variability in the data is maintained, which is typically achieved with
no more than 7 features. We also extract other higher-level features from the
audio signal such as its energy, the mean and variance of the fundamental
frequency over a time window, and the zero crossing rate [2]. The source of
the sound is localized using the Time Delay of Arrival (TDOA) method.

Four features are extracted from the video signal: the density of skin color in
the image (obtained by discriminating between skin and non-skin models, con-
sisting of histograms in YUV color space), the density of motion in the image
(obtained by image differences), the density of foreground pixels in the image
(obtained by background subtraction, after having learned the background),
and the density of face pixels in the image (obtained by means of a real-time
face detector [29]).

Finally, a history of the last 1, 5 and 60 seconds of mouse and keyboard
activities is logged.

First Level HMMs

The first level of HMMs includes two banks of distinct HMMs for classifying
the audio and video feature vectors. The structure for each of these HMMs is
determined by means of cross-validation on a validation set of real-time data.
On the audio side, we train one HMM for each of the following office sounds:
human speech, music, silence, ambient noise, phone ringing, and the sounds
of keyboard typing. In our architecture, all the HMMs are run in parallel. At
each instant, the model with the highest likelihood is selected and the data
–e.g. sound in the case of the audio HMMs– is classified correspondingly. We
will refer to this kind of HMMs as discriminative HMMs. The video signals
are classified using another bank of discriminative HMMs that implement a
person detector. At this level, the system detects whether nobody, one person
(semi-static), one active person, or multiple people are present in the office.

Each bank of HMMs can use any of the previously defined selective perception
strategies to determine which features to use. For example, a typical scenario
is one where the system uses EVI analysis to select in real-time the motion
and skin density features when there is one active person in the office, and
skin density and face detection when there are multiple people present.
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Second Level HMMs

The inferential results 5 from this layer (i.e. the outputs of the audio and video
classifiers), the derivative of the sound localization component, and the history
of keyboard and mouse activities constitute a feature vector that is passed to
the next (third) and highest layer of analysis. This layer handles concepts with
longer temporal extent. Such concepts include the user’s typical activities in or
near an office. In particular, the activities modeled are: (1) Phone conversa-

tion; (2) Presentation; (3) Face-to-face conversation; (4) User present,

engaged in some other activity; (5) Distant conversation (outside the

field of view); (6) Nobody present. Some of these activities can be used in a
variety of ways in services, such as those that identify a person’s availability.

The models at this level are also discriminative HMMs and they can also use
selective perception policies to determine which inputs from the previous layer
to use.

5.2 Performance of SEER

We have tested S-SEER in multiple offices, with different users and respective
environments for several weeks. In our tests, we have found that the high-level
layers of S-SEER are relatively robust to changes in the environment. In all
the cases, when we moved S-SEER from one office to another, we obtained
nearly perfect performance without the need for retraining the higher levels
of the hierarchy. Only some of the lowest-level models required re-training to
tune their parameters to the new conditions (such as different ambient noise,
background image, and illumination) . The fundamental decomposability of
the learning and inference of LHMMs makes it possible to reuse prior train-
ing of the higher-level models, allowing for the selective retraining of layers
that are less robust to the variations present in different instances of similar
environments.

5.3 HMMs vs LHMMs

In a more quantitative study, we compared first the performance of our model
with that of single, standard HMMs. The feature vector in the latter case
results from the concatenation of the audio, video and keyboard/mouse ac-
tivities features in one long feature vector. We refer to these HMMs as the
Cartesian Product (CP) HMMs.

5 See [1] for a detailed description of how we use these inferential results.

14



Note that the number of parameters to estimate is much lower for LHMMs
than for CP HMMs. Moreover, in LHMMs the inputs at each level have al-
ready been filtered by the previous level and are more stable than the feature
vectors directly extracted from the raw sensor data. Therefore, encoding prior
knowledge about the problem in the structure of the models decomposes the
problem in a set simpler subproblems and reduces the dimensionality of the
overall model. For the same amount of training data, we would expect LHMMs
to have superior performance than HMMs. Our experimental results corrobo-
rate this expectation. We direct the reader to [1] for a detailed description of
the experiments comparing HMMs and LHMMs for office activity recognition
as well as to a detailed review of an evaluation of the recognition accuracy of
the system.

6 Experiments with Selective Perception

We performed a comparative evaluation of the S-SEER system when executing
the EVI, rate-based, and random selective perception algorithms.

6.1 Studies of Accuracy and Computation

In an initial set of studies, we considered diagnostic accuracy and the com-
putational cost incurred by the system. The results are displayed in Tables
1, 2 and 3, and in Figure 3. We use the abbreviations: PC=Phone Conver-
sation; FFC=Face to Face Conversation; P=Presentation; O=Other Activity;
NP=Nobody Present; DC=Distant Conversation.

Figure 3 illustrates the automatic toggling on and off of features when running
the EVI analysis in S-SEER in the office and switching between different activ-
ities. The figure shows only the transitions among activities. If a feature was
turned on, its activation value in the graph is 1 whereas it is 0 if it was turned
off. The vertical lines indicate the change of activity and the labels on the top
show which activity was taking place at that moment. In this experiments we
assume a simple utility model represented as the identity matrix.

Observations that can be noted from the figure include: (1) At times the
system does not use any features at all. For example at time=50, no features
are evaluated as the system is confident enough about the situation, and it
selectively turns the features on only when necessary; (2) the system guided
by EVI tends to have longer switching time (i.e. the time that it takes to
the system to realize that a new activity is taking place) than when using all
the features all the time. We found that the EVI computations trigger the
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Fig. 3. Automatic selection of features when transitioning between different office
activities. Each graph represents the activation of one feature: video processing,
audio processing, sound localization and computer activity monitoring.

use of features again only after the likelihoods of hypotheses have sufficiently
decreased, i.e. none of the models is a good explanation of the data; (3) in
the example, the system never turns the sound localization feature on, due to
its high computational cost versus the relatively low informational value the
acoustical analysis provides.

Tables 1 and 2 compare the average recognition accuracy and average com-
putational cost (measured as % of CPU usage) when testing S-SEER on 600
sequences of office activity (100 sequences/activity) with and without (first
column, labeled “Nothing”) selective perception. Note how S-SEER with se-
lective perception achieved as high a level of accuracy as when evaluating all
the features all the time, but with a significant reduction on the CPU usage.

These results correspond to the following observational rates (in seconds): 10
for the audio channel, 20 for the video channel, .03 for the keyboard and
mouse activities and 20 for the sound localization. The recognition accuracy
for Phone Conversation in the rate-based approach is much lower than
for any of the other activities. This is because the system needs to use video
information more often than every 20 seconds in order to appropriately rec-
ognize that a Phone Conversation is taking place. If we raise the rate of
using video to 10 seconds, while keeping the same observational frequencies
for the other sensors, the recognition accuracy for Phone Conversation

becomes 89%, with a computational cost of 43%.
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Table 1
Average accuracies for S-SEER with and without different selective perception
strategies.

Recognition Accuracy (%)

Nothing EVI Rate-based Random

PC 100 100 29.7 78

FFC 100 100 86.9 90.2

P 100 97.8 100 91.2

O 100 100 100 96.7

NP 100 98.9 100 100

DC 100 100 100 100

Table 2
Average computational costs for S-SEER with and without different selective per-
ception strategies.

Computational Costs (% of CPU time)

Nothing EVI Rate-based Random

PC 61.22 44.5 37.7 47.5

FFC 67.07 56.5 38.5 53.4

P 49.80 20.88 35.9 53.3

O 59 19.6 37.8 48.9

NP 44.33 35.7 39.4 41.9

DC 44.54 23.27 33.9 46.1

6.2 Richer Utility and Cost Models

The EVI-based approach experiments previously reported correspond to using
an identity matrix as the system’s utility model U(Mi,Mj) and a measure of
cost cost(fk), proportional to the percentage of CPU usage. However, we can
assess more detailed models that capture a user’s preferences about different
misdiagnoses in various usage contexts and about latencies associated with
computation for perception.

Models of the Cost of Misdiagnosis

As an example, one can assess in dollars the cost to a user of misclassifying
Mi as Mj, i, j = 1...N in a specific setting. In one assessment technique, for
each actual office activity Mi, we seek the dollar amounts that users would
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be willing to pay to avoid having the activity misdiagnosed as Mj by an
automated system, for all N − 1 possible misdiagnoses.

Models of the Cost of Perceptual Analysis

In determining a real world measure of the expected value of computation,
we also need to consider the deeper semantics of the computational costs
associated with perceptual analysis. To make cost-benefit tradeoffs, we map
the computational cost and the utility to the same currency. Thus, we can
assess cost in terms of dollars that a user would be willing to pay to avoid
latencies associated with a computer loaded with perceptual tasks.

Operating systems are complex artifacts, and perceptual processes can bot-
tleneck a system in different ways (e.g. disk i/o, CPU, graphics display). In a
detailed model, we must consider dependencies among specific perceptual op-
erations and different kinds of latencies associated with primary applications
being executed by users. As an approximation, we seek to characterize the
relationship between latencies for common operations in typical applications
and the total load on the CPU. We then assess a function linking the latencies
to a user’s willingness to pay (in dollars) to avoid such latencies during typical
computing sessions. In the end, we have a cost model that provides a dollar
cost as a function of the computational load.

Similar to the value model, represented as a context-sensitive cost of misdiag-
nosis, we can introduce key contextual considerations into a cost-model. For
example, we can condition cost models on the specific software application that
has focus at any moment. We can also consider settings where a user is not
explicitly interacting with a computer (or is not relying on the background
execution of primary applications), versus cases where a user is interacting
with a primary application, and thus, at risk of experiencing costly latencies.

We compared the impact of an activity-dependent cost model in the EVI-
based perception approach. We run S-SEER on 900 sequences of office activity
(150 seq/activity) with a fixed cost model (i.e. the computational cost) and
an activity-dependent cost model. In the latter case, the cost of evaluating the
features was penalized when the user was interacting with the computer (e.g.
Presentation, Person Present-Other Activity), and it was reduced
when there was no interaction (e.g. Nobody Present, Distant Conver-

sation Overheard).

Table 3 summarizes our findings. It contains the percentage of time per activ-
ity that a particular feature was active both with constant costs and activity-
dependent costs. Note how the system selects less frequently computationally
expensive features (such as video and audio classification) when there is a
person interacting with the computer (third and fourth columns in the table)
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while it uses them more frequently when there is nobody in front of the com-
puter (last two columns in the table). Finally, the last row of each section of
the table corresponds to the average accuracy of each approach.

Table 3
Impact of a variable cost model in EVI-based selective perception as measured in
percentage of time that a particular feature was “ON”.

PC FFC P O NP DC

Constant Cost

Video 86.7 65.3 10 10 78.7 47.3

Audio 86.7 65.3 10 10 78.7 47.3

Sound Loc 0 0 0 0 0 0

Kb/Mouse 100 100 27.3 63.3 80.7 100

Accuracy (%) 100 100 97.8 100 98.9 100

Variable Cost

Video 78 48.7 2 1.3 86 100

Audio 78 40.7 2 1.3 86 100

Sound Loc 14.7 0 2 1.3 86 100

Kb/Mouse 100 100 53.3 63.3 88 100

Accuracy (%) 82.27 100 97.7 87.02 98.47 100

The use of such context-sensitive cost models is directly supported by S-SEER’s
domain level reasoning. S-SEER provides the probability that the primary
activity at hand involves interaction with the desktop system. If we assume
that the cost of computation is zero when users are not using a computer, we
can harness such a likelihood to generate an expected cost (EC) of perception
as follows,

EC(Lat(fk), E) = C(Lat(fk), E)(1 −
m∑

i=1

P (Mi|E)) (6)

where Lat(fk, E) represents the latency associated with executing the obser-
vation and analysis of the set of features fk, E represents evidence already
observed, and the index 1..m contains the subset activities of the N total ac-
tivities being considered that do not involve a user’s usage of the computer.
Thus, the probability distribution over the inferred activities changes the cost
structure. As EVI-based methods weigh the costs and benefits of making obser-
vations, systems representing expected cost as in Equation 6, would typically
shift their selective perception policies in situations where, for example, a user
begins to use an interactive application.
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Volatility and Persistence of the Observed Data

We can extend our analysis by learning and harnessing inferences about the
persistence versus volatility of observational states of the world. Rather than
consider findings unobserved at a particular time slice if the corresponding
sensory analyses have not been immediately performed, the growing error for
each sensor (or feature computation), based on the previous evaluation of
that sensor (or feature) and the time since the finding was last observed, is
learned. The probability distribution of how each feature’s uncertainty grows
over time can be learned and then captured by functions of time. For exam-
ple, the probability distribution of the skin color feature used in face detection
that had been earlier directly observed in a previous time slice can be modeled
by learning via training data. As faces do not disappear instantaneously –at
least typically, approximations can be modeled and leveraged based on previ-
ously examined states. After learning distributions that capture a probabilistic
model of the dynamics of the volatility versus persistence of observations, such
distributions can be substituted and integrated over, or sampled from, in lieu
of assuming “not observed” at each step. Thus, such probabilistic modeling
of persistence can be leveraged in the computation of the expected value of
information to guide the allocation of resources in perceptual systems.

For example, the probability distribution of skin color, Pskin(x), can be mod-
eled by a normal or Gaussian distribution of mean the last observed value and
with a covariance matrix that increases over time with a rate learned from
data. In a one-dimensional case:

Pskin(x) =
1

(2πσ(t)2)1/2
exp(−

(x − µ)2

2σ(t)2
) (7)

where µ is the mean value and σ(t) is the standard deviation at time slice “t”.
In future inferences, if the EVI analysis does not select the skin color feature
to be computed, instead of assuming that the skin color feature has not been
observed, the distribution in Equation 7 may be sampled to obtain its value.

We are currently working on learning the uncertainties for each sensor (feature)
from data and applying this approach to our EVI analysis.

7 Summary and Ongoing Research

We have reviewed our efforts to endow a computationally intensive percep-
tual system for office activity recognition with selective perception policies.
We have explored and compared the use of different selective perception poli-
cies for guiding perception in our models, emphasizing the balance between
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computation and recognition accuracy. In particular, we have compared EVI-
based perception and rate-based perception techniques to a system evaluating
all features all of the time all and a random feature selection approach. We
have carried out experiments probing the performance of LHMMs in S-SEER,
a real-time system for recognizing typical office activities.

Although the EVI analysis adds computational overhead to the system, we had
shown that a utility-directed information-gathering policy can significantly re-
duce the computational cost of the system by selectively activating features,
depending on the situation. When comparing the EVI analysis to the rate-
based and random approaches, we found that EVI provides the best balance
between computational cost and recognition accuracy. We believe that this
approach can be used to enhance multimodal interaction in a variety of do-
mains.

We are currently exploring the refinement of S-SEER along several dimensions.
In one area of effort, we are pursuing a deeper understanding of how the cost
and utility models affect the selection of features. As part of this effort, we
are seeking realistic utility models that represent the costs of recognitions in
different contexts. This research includes constructing models of cost based
on the expected disatisfaction of users with the reduction of performance of
their personal computer during different kinds of activities.

We are also interested in building and using models that represent the decay of
confidence about states of the world with increasing time since an observation
is made. Different observations are associated with different volatilities; we
believe that there is opportunity to use the expected stability of states to
inform selective perception policies.

We have found that selective perception policies can significantly reduce the
computation required by a multimodal behavior-recognition system. Selective
perception policies show promise for enhancing the design and operation of
multimodal systems–especially for systems that consume a great percentage
of available computation on perceptual tasks.
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