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ABSTRACT

This paper presents our SmartCar testbed platform� a real�time data acquisition and playback system and a machine
learning �dynamical graphical models� framework for modeling and recognizing driver maneuvers at a tactical level�
with particular focus on how contextual information a�ects the driver�s performance� The SmartCar�s perceptual
input is multi�modal� four video signals capture the surrounding tra	c� the driver�s head position and the driver�s
viewpoint
 and a real�time data acquisition system records the car�s brake� gear� steering wheel angle� speed and
acceleration throttle signals� We have carried out driving experiments with the instrumented car over a period of �
months� Over �
 drivers have driven the SmartCar for ���� hours in the greater Boston area� Dynamical Graphical
models� HMMs and potentially extensions �CHMMs�� have been trained using the experimental driving data to create
models of seven di�erent driver maneuvers� passing� changing lanes right and left� turning right and left� starting
and stopping� These models are essential to build more realistic automated cars in car simulators� to improve the
human�machine interface in driver assistance systems� to prevent potential dangerous situations and to create more
realistic automated cars in car simulators�
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�� INTRODUCTION

This paper presents our SmartCar testbed platform� a real�time data acquisition and playback system and a machine
learning �graphical models� framework for modeling and recognizing driver maneuvers at a tactical level� with
particular focus on how contextual information a�ects the driver�s performance� The SmartCar�s perceptual input is
multi�modal� four video signals capture the surrounding tra	c� the driver�s head position and the driver�s viewpoint

and a real�time data acquisition system records the car�s brake� gear� steering wheel angle� speed and acceleration
throttle signals� We have carried out driving experiments with the car over a period of � months� Over �
 drivers
have driven the SmartCar for ���� hours in the greater Boston area� Dynamical Graphical models� HMMs and
potentially extensions �CHMMs�� have been trained using the experimental driving data to create models of seven
di�erent driver maneuvers� passing� changing lanes right and left� turning right and left� starting and stopping� These
models are essential to build more realistic automated cars in car simulators� to improve the human�machine interface
in driver assistance systems� to prevent potential dangerous situations and to create more realistic automated cars
in car simulators� Our behavior models let us correctly classify the maneuver on average � second before any
signi�cant change in the car signals takes place�

The paper is structured as follows� �rst� the most relevant previous work is described in section �
 section �
presents an overview of the system
 the perceptual input of the SmartCar testbed is described in section �
 the
statistical models used for behavior modeling and recognition are described in section �� Section � contains the
description of our experiments and reports the recognition results in real driving situations� Finally� section �
summarizes the main conclusions and outlines our future lines of research�
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�� BACKGROUND AND PREVIOUS WORK

Human driver modeling is an interdisciplinary endeavor involving a number of �elds including robotics� psychology�
control theory and statistics� Driving in a real�life tra	c situation is a very di	cult task because good decisions need
to be made given only incomplete information in real time� Traditional AI techniques such as search�based planning
are infeasible for at least two reasons� most of these methods cannot function under noisy� uncertain conditions� and
the state�space is extremely large if realistic maneuvers such as aborted lane changes are taken into account�

One critical issue in machine�human interface systems are the transitions between manual and automated opera�
tion� They should be as seemless and smooth as possible� Such transitions would occur� for example� when the system
encounters non�supported situations� when it fails� returning to manual mode
 or when initiated by the driver� In
any case� it is very important not to interfere with the driver�s intended maneuver� specially in emergency situations�
and to avoid discontinuities in the system� inducing feelings of incongruity while driving� Therefore� developing
systems for predicting the driver�s next maneuver or inferring driver�s intentions is imperative to facilitate smooth
and appropriate control mode transitions�

Building e�ective driver behavior recognition methods requires a thorough understanding of driver behavior and
the construction of a model capable of both generating and explaining the drivers� behavioral characteristics� The
task of driving has traditionally been characterized as consisting in three di�erent levels� strategic� tactical and
operational�� At the highest �strategic� level� a route is planned and goals are determined
 at the intermediate
�tactical� level� maneuvers are selected to achieve short�term objectives �such as deciding whether to pass a blocking
vehicle�
 and at the lowest �operational� level� those maneuvers are translated into control operations� In this paper
we focus on recognizing driving maneuvers at a tactical level� Namely� we have built models of passing� changing
lanes right and left� turning right and left� starting� and stopping�

Previous studies in psychology have found that driver behavior can be characterized as a sequence of basic
actions each associated with a particular state of the driver�vehicle�environment system and characterized by a set
of observable features��

The closest work to ours is that of Pentland and Liu����� and that of Kuge at al�� In�� Pentland and Liu
develop a computational state�based model of driver behavior� They model the driver�s internal state as a four�state
Hidden Markov Model �HMM�� Once the HMM has been trained the system is able to predict when the driver
is about to brake or turn� This knowledge may then be used by a smart vehicle to optimize its behavior for the
expected maneuver �in some sense� the situation awareness is shared over the vehicle�driver system� In a similar
way� Kuge et al� present an HMM method that characterizes and detects lane changing maneuvers� The authors
focus on information processing models of human driver behavior generation and utilize them to adopt a model
based approach in the development of a lane change detection and recognition model� The primary components are
skilled low level maneuvers whose initiation is managed by higher level decision making components� Perceptual
models can be used to gain some insights into this area� Recent research�� shows that drivers� eye �xation patterns
are strongly correlated with their current mental state� Other more constrained but certainly important aspects of
driver behavior were estimated by few early methods� such as� for example� lane change intention�	 However� none
of these methods was human model�based�

Pentland and Liu validated their model in an experiment conducted in a driving simulator� The objective of
that validation test was to recognize di�erent driving maneuvers at a tactical level� such as a right turn� a left turn
or stopping� In order to apply such a model to a driver assistance system� it is necessary to assess to what degree
the HMM based behavior recognition model also provides a plausible model for human behavior generation� This
knowledge may not only o�er better insight into selecting a particular HMM structure but also provide better insight
into potential limitations of the characterization in situations that were not part of the training set used to �t the
HMM parameters�

None of these previous systems� however� incorporates contextual information when modeling driver behavior�
Nonetheless� knowledge of the context is necessary to properly make decisions in complex dynamic environments such
as driving� Psychologists attribute this competence to a task�speci�c understanding of the situation� termed situation

awareness� I this paper we develop a machine models of driver behavior that incorporate elements of situational
awareness for tactical driving�

There is today strong research e�orts invested in developing partially or fully automated driver assistance systems�
For example� headway distance control or lane keeping control systems� which make use of Intelligent Transportation



System �ITS� technologies���
 To achieve such assistive systems� it is important to adopt approaches aimed at
improving the performance of the driver�vehicle�context cooperative system by regarding driving as an interaction
between the driver� the vehicle and the surrounding road information and tra	c�

Finally� it has also been argued that laboratory research of SA should be conducted under conditions that a�ord
as much realistic behavior as possible� Due to the simplicity of most car simulators� specially the lack of realism
of the computer generated automated cars� the experiments carried out in this paper took place in a real car while
driving in the greater Boston area�

To summarize� this paper extends Pentland and Liu�s framework���� in several ways� ��� we model a larger
number of maneuvers at a tactical lever �namely seven�
 ��� we show that contextual information is critical for the
accurate recognition of some maneuvers
 ��� we use real data collected in an instrumented car� as opposed to using
a car simulator�

�� SYSTEM�S ARCHITECTURE

The system�s architecture is depicted in �gure �� In the proposed architecture� there is a bottom�up stream of
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Figure �� SmartCar architecture

information gathered with the various sensors� and a top�down information �ow through the predictions provided by
the behavior models� Consequently a Bayesian approach o�ers a mathematical framework for both combining the
observations �bottom�up� with complex behavioral priors �top�down� to provide expectations that could eventually
be fed back to the perceptual system�

�� PERCEPTUAL INPUT

There are at least three di�erent aspects beyond the driver that are relevant when driving at a tactical�level driving�



�� SmartCar physical self�state� information sensed from the speedometer� acceleration throttle� steering wheel
angle sensor �optical encoder�� brake pedal� gear and GPS unit�

�� Road state� including road geometry and exit information�

�� Tra	c state� speeds and relative positions of the surrounding tra	c�

The sensors installed in the SmartCar provide information about� ��� the car�s internal state � brake� acceleration
throttle� steering wheel angle� gear and speed
 ��� surrounding tra	c and lanes� via two Sony EVI�D�
 cameras with
wide �eld of view lenses� mounted on the front dashboard and on a tripod in the trunk� to record frontal and rear
tra	c
 and ��� driver�s face position� orientation and viewpoint� by use of an ELMO CCD camera mounted on the
steering wheel� recording the driver�s face� and another ELMO CCD camera mounted on a pair of glasses to record
the driver�s viewpoint� All the video signals are combined in a quadsplitter whose output is recorded using a Sony
GV�A�

 Hi� Video Walkman recorder�

We have developed the hardware and software for acquiring in real�time car state data� All the signals but the
steering wheel are available directly from the car electronics system� We have designed a steering wheel angle sensor
and mounted it on the car�s steering wheel� The hardware obtains its inputs from sources of three di�erent nature as
shown in table �� All the car signals are connected to a PCMCIA Data Acquisition Card by National Instruments�
The analog signals are digitized and sampled at ��
 scans�sec� The digital signals are sampled using the same card at
the same sampling rate ���
 scans�sec�� All the signals can be directly connected to one of these boards� except for
the speed� given that it consists of a �� pulse�per�revolution signal� Therefore for this signal a frequency�to�voltage
converter is used to convert it to analog�

Table �� Sensor signals in the Smart Car�

Signal Nature Description

Speed Analog �� pulse�wheel rev� square wave
Acc Analog Linear 
��� V
Brake Digital Boolean �
�o�� ��on�
Gear Digital ��bit
Steering angle Analog Up to � revolutions

The software for data acquisition and playback has been developed in LabVIEW� LabVIEW is a powerful pro�
gramming environment used in engineering and scienti�c environments� LabVIEW is based on a functional program�
ming language known as G� developed by National Instruments� We have developed a graphical user interface for
calibrating the car signals� triggering the acquisition� and annotating the driving maneuvers as they take place�

�� DRIVER BEHAVIOR MODELS

Statistical directed acyclic graphs �DAGs� or probabilistic inference networks �PINs����
 can provide a computation�
ally e	cient solution to the problem of time series analysis and modeling� HMMs and some of their extensions� in
particular CHMMs����� can be viewed as a particular and simple case of temporal PIN or DAG� Graphically Markov
Models are often depicted �rolled�out in time� as Probabilistic Inference Networks� such as in �gure ��

PINs present important advantages that are relevant to our problem� they can handle incomplete data as well
as uncertainty
 they are trainable and easier to avoid over�tting
 they encode causality in a natural way
 there
are algorithms for both doing prediction and probabilistic inference
 they o�er a framework for combining prior
knowledge and data
 and �nally they are modular and parallelizable�

Traditional HMMs o�er a probabilistic framework for modeling processes that have structure in time� They o�er
clear Bayesian semantics� e	cient algorithms for state and parameter estimation� and they automatically perform
dynamic time warping� An HMM is essentially a quantization of a system�s con�guration space into a small number
of discrete states� together with probabilities for transitions between states� A single �nite discrete variable indexes
the current state of the system� Any information about the history of the process needed for future inferences must
be re�ected in the current value of this state variable�
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Figure �� Graphical model representation of a HMM �a� and a CHMM �b� rolled�out in time

However many interesting real�life problems are composed of multiple interacting processes� and thus merit a
compositional representation of two or more variables� This is typically the case for systems that have structure both
in time and space� With a single state variable� Markov models are ill�suited to these problems� In order to model
these interactions a more complex architecture is needed� We have developed a new architecture called Coupled
Hidden Markov Models �CHMMs� for modeling interacting processes�����

The posterior state sequence probability P �SjO� for HMMs is given by

P �SjO� � Ps�ps��o��
TY

t��

pst�ot�Pstjst��
���

where S � fa�� � � � � aNg is the set of discrete states� st � S corresponds to the state at time t� Pijj
�
� Pst�aijst���aj

is the state�to�state transition probability �i�e� probability of being in state ai at time t given that the system was in
state aj at time t� ��� In the following we will write them as Pstjst��

� Pi
�
� Ps��ai � Ps� are the prior probabilities

for the initial state� Finally pi�ot�
�
� pst�ai�ot� � pst�ot� are the output probabilities for each state�� The well�

known Baum�Welch algorithm e	ciently estimates �using dynamic programming� the state posterior probability in
an HMM �inference problem�� The MAP identi�cation problem in the context of HMMs involves identifying the most
likely hidden state sequence given the observed evidence� Just as with the inference problem� the Viterbi algorithm
provides an e	cient� locally recursive method for solving this problem with complexity TN��

	� EXPERIMENTS

Apparatus A self�instrumented automatic Volvo V�
XC ������ was used to measure driver behavior data� The
car sensors have been described in section ��

The procedure The driving task took place in the greater Boston area� Over �
 drivers drove both in the city and
in di�erent highway sections� for about ���� hours� The drivers were asked to sign an consent form before starting
the experiment� They were rewarded ��
 for participating�

A driving instructor was with the driver throughout the experiment� The instructor gave directions to the driver
about where to go and labeled the driving maneuvers as they took place using the laptop computer and the LabVIEW
GUI� Because our focus in on predicting what is the most likely maneuver to take place next� the driver was requested
to verbally report his�her next intended action before carrying it out� The four video signals were recorded for
the entire route� The car signals� however� were only recorded when a maneuver was about to happen� A time
window of � seconds was used� i�e� the car signals were recorded starting � seconds before the driver reported his
intentionality to perform a maneuver� Both the video and car data was time stamped �the VCR and the laptop
clocks were synchronized before every session�� The maneuvers that we collected data for are� passing another car�
turning right and left� changing lanes right and left� starting� stopping and merging�

�The output probability is the probability of observing ot given state ai at time t



Figures � and � show typical car and context signals in one example of a �passing� and a �turning� maneuvers
collected in the experiments� Note how� in the case of passing� the car signals contain little information about the
maneuver type� whereas the gaze and lane are much more relevant features�
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Figure �� Typical car signals for passing and turning left maneuvers
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Figure �� Typical contextual �gaze and lane� signals for a passing and turning left maneuvers

After the driving task was completed� the drivers were asked to �ll in a questionnaire with basic questions about
their driving experience� skills and the experiment�

Data post�processing and Driver Models The contextual information was acquired via the video signals� We
have developed a video processing graphical environment that let�s the user record� playback and annotate the video
signals coming from the front� rear and face driver cameras� Contextual information �such as the driver�s gaze� the
relative position of the road lanes or the relative position� velocities and direction of the surrounding tra	c� was
manually annotated for each frame and maneuver�

Due to the di�erent sampling rate on the car and video signals� we subsampled the car data to match the video
frame rate� The �nal sampling rate was of approximately �
 samples�s� All the continuous signals were low�pass
�ltered using Butterworth �lters�



Using the car� driver�s gaze and road lane data� we built HMMs for each of the maneuvers to be recognized� We
evaluated the performance on recognition �accuracy� of the best HMMs trained with di�erent feature vectors�

�� Only car signal data� brake� steering wheel angle� gear� and acceleration throttle�

�� Car data and lane position information �front and back lane positions��

�� Car data and driver gaze information�

�� Car data� lane and driver information�

The gaze was a discrete signal with � possible values� ��� front road� ��� rear window mirror� ��� right mirror�
��� left mirror� ��� right and ��� left�

In the case of the lanes� a single value was computed from the �x� y� image coordinates of the road lanes�

lanei � atan��jy� � y�j� jx� � x�j� ���

i � ffront left ���� front right �fr�� back left �bl�� back right �br�g ���

lanefeat �
lanefr � lanebr � �lanefl � lanebl�

��

���

The best models �best number of states and feature vector� were selected using �
�fold cross�validation� The
training data set was about �
� of the total amount of data� The testing data set consisted of the rest of the data
that had not been used for training�

The number of examples collected in the driving experiments is summarized in table �� The table contains also
the average length of each maneuver in number of samples and in seconds�

Table �� Number of driving examples and average length per maneuver in number of samples
Number of driving examples Average Length �samples �s�

Car data Tra	c data Car data Tra	c data
Passing ��
 �
 ��� ����� s� ��� ����� s�

turning right ��� �� ��� ���� s� ��� ���� s�
turning left ��
 �� ��� ���� s� ��� ���� s�

changing lane right ��� �� ��� ���� s� �
� ���� s�
changing lane left ��� �� ��� ���� s� ��� ���� s�

starting �
� �
 ��� ���� s� �
� ���� s�
stopping �
� �� ��� ���� s� ��� ���� s�

The results on recognizing the previous driving maneuvers are depicted in table �� Some interesting conclusions
to be drawn from the experimental results are�

�� There is a plateau of accuracy that can be reached using car information only� Certain maneuvers �such as
passing and changing lanes left� cannot be accurately distinguished using car information only�

�� The context is crucial for recognizing maneuvers such as turnings and lane changes�

�� As shown in�� in a car simulator� the driver�s gaze seems to be strongly correlated with the driver�s mental
state in real life driving� It is� thus� a relevant feature for driver maneuver prediction� specially in lane changes�
passings and turnings�



Table �� Accuracy for HMMs car only� car and lane and car and gaze data
Accuracy ���

Car Car Car
and Lane and Gaze

passing �

�
 �

�
 �

�

turning right ���� ���� ����
turning left 
�
 ���� ����

changing lane right 
�
 ���� ���
changing lane left ���� ���� ����

starting �

�
 ���� ����
stopping �

�
 �

�
 �

�


�� PredictivePower� The models are able to recognize the maneuver on average � second before any signi�cant
��
� deviation� change in the car or contextual signals take place� Table � contains the average prediction
power for each of the maneuvers� and �gure � illustrates through an example what this predictive power means�
It depicts� frame by frame� the lane feature and the �log�likelihood� of the di�erent models for a passing
maneuver� There is no signi�cant change in the lane position until frame ��� However� the models are able to
recognize the passing from frame � on� In consequence� our driver behavior models are able to anticipate that
the passing is going to take place about ��� seconds before any signi�cant� perceivable change takes place�

Table �� Predictive power of the models in frames and secods
Maneuver Average Predictive Power in Frames �seconds�

passing ���� ����� s�
stopping �
�� ���� s�

changing lane left ��� ��� s�
turning left ���
 ��� s�

changing lane right �
�� ��� s�
turning right ���� ��� s�

starting ���� ���� s�


� CONCLUSIONS AND FUTURE WORK

In this paper we have described our SmartCar testbed� a real�time data acquisition system in a real car and a machine
learning framework for modeling and recognizing driver maneuvers at a tactical level� with special emphasis on how
does the context a�ect the driver�s performance� We have validated our theoretical framework with real driving data
of over �
 subjects that drove for ��� hours in the greater Boston area� We have shown the predictive power of our
modeling framework� on average� each of the seven driving maneuvers can accurately be recognized � second before
any signi�cant change in the car signals takes place� We believe that these models would be essential to build more
realistic automated cars in car simulators� to improve the human�machine interface in driver assistance systems� to
prevent potential dangerous situations and to create more realistic automated cars in car simulators�

We are building more complex models of driver behavior following our mathematical framework� More speci�cally
we have developed extensions of HMMs� Extensions to the basic Markov model generally increase the memory of
the system �durational modeling�� providing it with compositional state in time� We are interested in systems that
have compositional state in space� e�g�� more than one simultaneous state variable� It is well known that the exact
solution of extensions of the basic HMM to � or more chains is intractable� In those cases approximation techniques
are needed��
 However� it is also known that there exists an exact solution for the case of � interacting chains���

We propose using Coupled Hidden Markov Models �CHMMs����� for modeling two interacting processes �humans��
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Figure �� Prediction of a passing maneuver about ��� seconds before any signi�cant lane change takes place�

or cars�� In this architecture state chains are coupled via matrices of conditional probabilities modeling causal
�temporal� in�uences between their hidden state variables� Figure � �b� depicts the graphical model architecture for
CHMMs�

In the case of CHMMs� the state posterior probability is given by �� Note that we need to introduce another set
of probabilities� Pstjs�t��

� which correspond to the probability of state st at time t in one chain given that the other

chain �denoted hereafter by superscript � � was in state s�t�� at time t��� These new probabilities express the causal
in�uence �coupling� of one chain to the other� The posterior state probability for CHMMs is expressed as

P �SjO� �
Ps�ps��o��Ps�

�

ps�
�

�o���

P �O�
�

TY

t��

Pstjst��
Ps�

t
js�

t��

Ps�
t
jst��

Pstjs�t��

pst�ot�ps�t�o
�
t� ���

where st� s
�
t
 ot� o

�
t denote states and observations for each of the Markov chains that compose the CHMMs�

In���� a deterministic approximation for maximum a posterior �MAP� state estimation is introduced� It enables
fast classi�cation and parameter estimation via EM� and also obtains an upper bound on the cross entropy with
the full �combinatoric� posterior which can be minimized using a subspace that is linear in the number of state



variables� An �N�heads dynamic programming algorithm samples from the O�N � highest probability paths through
a compacted state trellis� with complexity O�T �CN ��� for C chains of N states apiece observing T data points� The
Cartesian product equivalent HMM would involve a combinatoric number of states� typically requiring O�TN�C�
computations� We are particularly interested in e	cient� compact algorithms that can perform in real�time�

Extending the CHMM framework� we propose a graphical model architecture for modeling driver behavior �see
�gure ��� instead of a symmetric CHMM� asymmetric CHMMs are connected in a lattice structure� where the
surrounding tra	c a�ects the behavior of the driver� but not vice�versa� This is just an approximation to the more
realistic situation of mutual interactions� The main justi�cation of such an approximation comes from the fact that
in our experiments� the driver did indeed modify his�her behavior depending on the surrounding tra	c� but not
vice�versa�

aCHMMs

Pairwise Interactions 
modeled with asymmetric CHMMs

Figure 	� Representation of the asymmetric CHMMs lattice for modeling car interactions

Our preliminary results using CHMMs for driver behavior recognition show that� ��� the performance of CHMMs
the same as that of HMMs in the worst case
 ��� there are many situations in driving where a single HMM cannot
capture the interactions between the driver and the surrounding tra	c� It is specially in these cases when CHMMs
would o�er the greatest advantage� We expect to have statistics on the performance of CHMMs in the next weeks�
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