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ABSTRACT

This paper presents our SmartCar testbed platform: a real-time data acquisition and playback system and a machine
learning —dynamical graphical models— framework for modeling and recognizing driver maneuvers at a tactical level,
with particular focus on how contextual information affects the driver’s performance. The SmartCar’s perceptual
input is multi-modal: four video signals capture the surrounding traffic, the driver’s head position and the driver’s
viewpoint; and a real-time data acquisition system records the car’s brake, gear, steering wheel angle, speed and
acceleration throttle signals. We have carried out driving experiments with the instrumented car over a period of 2
months. Over 70 drivers have driven the SmartCar for 1.25 hours in the greater Boston area. Dynamical Graphical
models, HMMs and potentially extensions (CHMMSs), have been trained using the experimental driving data to create
models of seven different driver maneuvers: passing, changing lanes right and left, turning right and left, starting
and stopping. These models are essential to build more realistic automated cars in car simulators, to improve the
human-machine interface in driver assistance systems, to prevent potential dangerous situations and to create more
realistic automated cars in car simulators.
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1. INTRODUCTION

This paper presents our SmartCar testbed platform: a real-time data acquisition and playback system and a machine
learning —graphical models— framework for modeling and recognizing driver maneuvers at a tactical level, with
particular focus on how contextual information affects the driver’s performance. The SmartCar’s perceptual input is
multi-modal: four video signals capture the surrounding traffic, the driver’s head position and the driver’s viewpoint;
and a real-time data acquisition system records the car’s brake, gear, steering wheel angle, speed and acceleration
throttle signals. We have carried out driving experiments with the car over a period of 2 months. Over 70 drivers
have driven the SmartCar for 1.25 hours in the greater Boston area. Dynamical Graphical models, HMMs and
potentially extensions (CHMMSs), have been trained using the experimental driving data to create models of seven
different driver maneuvers: passing, changing lanes right and left, turning right and left, starting and stopping. These
models are essential to build more realistic automated cars in car simulators, to improve the human-machine interface
in driver assistance systems, to prevent potential dangerous situations and to create more realistic automated cars
in car simulators. Our behavior models let us correctly classify the maneuver on average 1 second before any
significant change in the car signals takes place.

The paper is structured as follows: first, the most relevant previous work is described in section 2; section 3
presents an overview of the system; the perceptual input of the SmartCar testbed is described in section 4; the
statistical models used for behavior modeling and recognition are described in section 5. Section 6 contains the
description of our experiments and reports the recognition results in real driving situations. Finally, section 7
summarizes the main conclusions and outlines our future lines of research.
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2. BACKGROUND AND PREVIOUS WORK

Human driver modeling is an interdisciplinary endeavor involving a number of fields including robotics, psychology,
control theory and statistics. Driving in a real-life traffic situation is a very difficult task because good decisions need
to be made given only incomplete information in real time. Traditional Al techniques such as search-based planning
are infeasible for at least two reasons: most of these methods cannot function under noisy, uncertain conditions, and
the state-space is extremely large if realistic maneuvers such as aborted lane changes are taken into account.

One critical issue in machine-human interface systems are the transitions between manual and automated opera-
tion. They should be as seemless and smooth as possible. Such transitions would occur, for example, when the system
encounters non-supported situations, when 1t fails, returning to manual mode; or when initiated by the driver. In
any case, 1t 18 very important not to interfere with the driver’s intended maneuver, specially in emergency situations,
and to avoid discontinuities in the system, inducing feelings of incongruity while driving. Therefore, developing
systems for predicting the driver’s next maneuver or inferring driver’s intentions is imperative to facilitate smooth
and appropriate control mode transitions.

Building effective driver behavior recognition methods requires a thorough understanding of driver behavior and
the construction of a model capable of both generating and explaining the drivers’ behavioral characteristics. The
task of driving has traditionally been characterized as consisting in three different levels: strategic, tactical and
operational.® At the highest (strategic) level, a route is planned and goals are determined; at the intermediate
(tactical) level, maneuvers are selected to achieve short-term objectives —such as deciding whether to pass a blocking
vehicle—; and at the lowest (operational) level, those maneuvers are translated into control operations. In this paper
we focus on recognizing driving maneuvers at a tactical level. Namely, we have built models of passing, changing
lanes right and left, turning right and left, starting, and stopping.

Previous studies in psychology have found that driver behavior can be characterized as a sequence of basic
actions each associated with a particular state of the driver-vehicle-environment system and characterized by a set
of observable features.*

The closest work to ours is that of Pentland and Liu,®'? and that of Kuge at al.” In'® Pentland and Liu
develop a computational state-based model of driver behavior. They model the driver’s internal state as a four-state
Hidden Markov Model (HMM). Once the HMM has been trained the system is able to predict when the driver
is about to brake or turn. This knowledge may then be used by a smart vehicle to optimize its behavior for the
expected maneuver —in some sense, the situation awareness is shared over the vehicle-driver system. In a similar
way, Kuge et al. present an HMM method that characterizes and detects lane changing maneuvers. The authors
focus on information processing models of human driver behavior generation and utilize them to adopt a model
based approach in the development of a lane change detection and recognition model. The primary components are
skilled low level maneuvers whose initiation is managed by higher level decision making components. Perceptual
models can be used to gain some insights into this area. Recent research!? shows that drivers’ eye fixation patterns
are strongly correlated with their current mental state. Other more constrained but certainly important aspects of
driver behavior were estimated by few early methods, such as, for example, lane change intention.® However, none
of these methods was human model-based.

Pentland and Liu validated their model in an experiment conducted in a driving simulator. The objective of
that validation test was to recognize different driving maneuvers at a tactical level, such as a right turn, a left turn
or stopping. In order to apply such a model to a driver assistance system, it is necessary to assess to what degree
the HMM based behavior recognition model also provides a plausible model for human behavior generation. This
knowledge may not only offer better insight into selecting a particular HMM structure but also provide better insight
into potential limitations of the characterization in situations that were not part of the training set used to fit the
HMM parameters.

None of these previous systems, however, incorporates contextual information when modeling driver behavior.
Nonetheless, knowledge of the context is necessary to properly make decisions in complex dynamic environments such
as driving. Psychologists attribute this competence to a task-specific understanding of the situation, termed situation
awareness. 1 this paper we develop a machine models of driver behavior that incorporate elements of situational
awareness for tactical driving.

There is today strong research efforts invested in developing partially or fully automated driver assistance systems.
For example, headway distance control or lane keeping control systems, which make use of Intelligent Transportation



System (ITS) technologies.?® To achieve such assistive systems, it is important to adopt approaches aimed at
improving the performance of the driver-vehicle-context cooperative system by regarding driving as an interaction
between the driver, the vehicle and the surrounding road information and traffic.

Finally, 1t has also been argued that laboratory research of SA should be conducted under conditions that afford
as much realistic behavior as possible. Due to the simplicity of most car simulators, specially the lack of realism
of the computer generated automated cars, the experiments carried out in this paper took place in a real car while
driving in the greater Boston area.

To summarize, this paper extends Pentland and Liu’s framework®!3 in several ways: (1) we model a larger

number of maneuvers at a tactical lever —namely seven—; (2) we show that contextual information is critical for the
accurate recognition of some maneuvers; (3) we use real data collected in an instrumented car, as opposed to using
a car simulator.

3. SYSTEM’S ARCHITECTURE

The system’s architecture is depicted in figure 1. In the proposed architecture, there is a bottom-up stream of
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Figure 1. SmartCar architecture

information gathered with the various sensors, and a top-down information flow through the predictions provided by
the behavior models. Consequently a Bayesian approach offers a mathematical framework for both combining the
observations (bottom-up) with complex behavioral priors (top-down) to provide expectations that could eventually
be fed back to the perceptual system.

4. PERCEPTUAL INPUT

There are at least three different aspects beyond the driver that are relevant when driving at a tactical-level driving:



1. SmartCar physical self-state: information sensed from the speedometer, acceleration throttle, steering wheel
angle sensor (optical encoder), brake pedal, gear and GPS unit.

2. Road state: including road geometry and exit information.

3. Traffic state: speeds and relative positions of the surrounding traffic.

The sensors installed in the SmartCar provide information about: (1) the car’s internal state : brake, acceleration
throttle, steering wheel angle, gear and speed; (2) surrounding traffic and lanes: via two Sony EVI-D30 cameras with
wide field of view lenses, mounted on the front dashboard and on a tripod in the trunk, to record frontal and rear
traffic; and (3) driver’s face position, orientation and viewpoint: by use of an ELMO CCD camera mounted on the
steering wheel, recording the driver’s face, and another ELMO CCD camera mounted on a pair of glasses to record
the driver’s viewpoint. All the video signals are combined in a quadsplitter whose output is recorded using a Sony

GV-A500 Hi8 Video Walkman recorder.

We have developed the hardware and software for acquiring in real-time car state data. All the signals but the
steering wheel are available directly from the car electronics system. We have designed a steering wheel angle sensor
and mounted it on the car’s steering wheel. The hardware obtains its inputs from sources of three different nature as
shown in table 1. All the car signals are connected to a PCMCIA Data Acquisition Card by National Instruments.
The analog signals are digitized and sampled at 150 scans/sec. The digital signals are sampled using the same card at
the same sampling rate (150 scans/sec). All the signals can be directly connected to one of these boards, except for
the speed, given that it consists of a 12 pulse-per-revolution signal. Therefore for this signal a frequency-to-voltage
converter is used to convert it to analog.

Table 1. Sensor signals in the Smart Car.

| Signal | Nature | Description |
Speed Analog | 12 pulse/wheel rev. square wave
Acc Analog Linear 0-12 V
Brake Digital Boolean (0=off, 1=on)
Gear Digital 2-bit
Steering angle | Analog Up to 3 revolutions

The software for data acquisition and playback has been developed in LabVIEW. LabVIEW is a powerful pro-
gramming environment used in engineering and scientific environments. LabVIEW is based on a functional program-
ming language known as (G, developed by National Instruments. We have developed a graphical user interface for
calibrating the car signals, triggering the acquisition, and annotating the driving maneuvers as they take place.

5. DRIVER BEHAVIOR MODELS

Statistical directed acyclic graphs (DAGs) or probabilistic inference networks (PINs)®!5 can provide a computation-
ally efficient solution to the problem of time series analysis and modeling. HMMs and some of their extensions, in
particular CHMMs, ' can be viewed as a particular and simple case of temporal PIN or DAG. Graphically Markov
Models are often depicted ’rolled-out in time’ as Probabilistic Inference Networks, such as in figure 2.

PINs present important advantages that are relevant to our problem: they can handle incomplete data as well
as uncertainty; they are trainable and easier to avoid overfitting; they encode causality in a natural way; there
are algorithms for both doing prediction and probabilistic inference; they offer a framework for combining prior
knowledge and data; and finally they are modular and parallelizable.

Traditional HMMs offer a probabilistic framework for modeling processes that have structure in time. They offer
clear Bayesian semantics, efficient algorithms for state and parameter estimation, and they automatically perform
dynamic time warping. An HMM is essentially a quantization of a system’s configuration space into a small number
of discrete states, together with probabilities for transitions between states. A single finite discrete variable indexes
the current state of the system. Any information about the history of the process needed for future inferences must
be reflected in the current value of this state variable.
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Figure 2. Graphical model representation of a HMM (a) and a CHMM (b) rolled-out in time

However many interesting real-life problems are composed of multiple interacting processes, and thus merit a
compositional representation of two or more variables. This is typically the case for systems that have structure both
in time and space. With a single state variable, Markov models are ill-suited to these problems. In order to model
these interactions a more complex architecture is needed. We have developed a new architecture called Coupled
Hidden Markov Models (CHMMs) for modeling interacting processes.t!!

The posterior state sequence probability P(S]O) for HMMs is given by

T
P(S|0) = Pypsi(o1) [ peclo0) ooy (1)
t=2
where S = {ai,...,an} is the set of discrete states, s; € S corresponds to the state at time t. P; = Py —a,|s,_,=q,

is the state-to-state transition probability (i.e. probability of being in state a; at time ¢ given that the system was in
state a; at time ¢t — 1). In the following we will write them as Pg s, Pi = Ps,=q, = P, are the prior probabilities
for the initial state. Finally p;(01) = ps,=a,(0¢) = ps,(04) are the output probabilities for each state*. The well-
known Baum-Welch algorithm efficiently estimates —using dynamic programming— the state posterior probability in
an HMM (inference problem). The MAP identification problem in the context of HMMs involves identifying the most
likely hidden state sequence given the observed evidence. Just as with the inference problem, the Viterbi algorithm
provides an efficient, locally recursive method for solving this problem with complexity TNZ.

6. EXPERIMENTS

Apparatus A self-instrumented automatic Volvo V70XC (1998) was used to measure driver behavior data. The
car sensors have been described in section 4.

The procedure The driving task took place in the greater Boston area. Over 70 drivers drove both in the city and
in different highway sections, for about 1.25 hours. The drivers were asked to sign an consent form before starting
the experiment. They were rewarded $20 for participating.

A driving instructor was with the driver throughout the experiment. The instructor gave directions to the driver
about where to go and labeled the driving maneuvers as they took place using the laptop computer and the LabVIEW
GUI. Because our focus in on predicting what is the most likely maneuver to take place next, the driver was requested
to verbally report his/her next intended action before carrying it out. The four video signals were recorded for
the entire route. The car signals, however, were only recorded when a maneuver was about to happen. A time
window of 2 seconds was used, i.e. the car signals were recorded starting 2 seconds before the driver reported his
intentionality to perform a maneuver. Both the video and car data was time stamped (the VCR and the laptop
clocks were synchronized before every session). The maneuvers that we collected data for are: passing another car,
turning right and left, changing lanes right and left, starting, stopping and merging.

*The output probability is the probability of observing o; given state a; at time ¢



Figures 3 and 4 show typical car and context signals in one example of a 'passing’ and a ’turning’ maneuvers
collected in the experiments. Note how, in the case of passing, the car signals contain little information about the

maneuver type, whereas the gaze and lane are much more relevant features.
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Figure 3. Typical car signals for passing and turning left maneuvers
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Figure 4. Typical contextual (gaze and lane) signals for a passing and turning left maneuvers

After the driving task was completed, the drivers were asked to fill in a questionnaire with basic questions about

their driving experience, skills and the experiment.

Data post-processing and Driver Models The contextual information was acquired via the video signals. We
have developed a video processing graphical environment that let’s the user record, playback and annotate the video
signals coming from the front, rear and face driver cameras. Contextual information —such as the driver’s gaze, the
relative position of the road lanes or the relative position, velocities and direction of the surrounding traffic— was
manually annotated for each frame and maneuver.

Due to the different sampling rate on the car and video signals, we subsampled the car data to match the video
frame rate. The final sampling rate was of approximately 30 samples/s. All the continuous signals were low-pass

filtered using Butterworth filters.



Using the car, driver’s gaze and road lane data, we built HMMs for each of the maneuvers to be recognized. We
evaluated the performance on recognition (accuracy) of the best HMMs trained with different feature vectors:

1. Only car signal data: brake, steering wheel angle, gear, and acceleration throttle.
2. Car data and lane position information (front and back lane positions).
3. Car data and driver gaze information.

4. Car data, lane and driver information.

The gaze was a discrete signal with 6 possible values: (1) front road, (2) rear window mirror, (3) right mirror,

(4) left mirror, (5) right and (6) left.

In the case of the lanes, a single value was computed from the (z,y) image coordinates of the road lanes:

lane; = atan2(]yz — y1|, |x2 — x1]) (2)
i € {front left (fl), front right (fr), back left (bl), back right (br)} (3)
laneom = lanes, + laney, ;O(laneﬂ + laney;) (4)

The best models (best number of states and feature vector) were selected using 10-fold cross-validation. The
training data set was about 80% of the total amount of data. The testing data set consisted of the rest of the data
that had not been used for training.

The number of examples collected in the driving experiments is summarized in table 2. The table contains also
the average length of each maneuver in number of samples and in seconds.

Table 2. Number of driving examples and average length per maneuver in number of samples
| | Number of driving examples | Average Length #samples (s) |

Car data Traffic data Car data Traffic data

Passing 710 10 517 (17.25) | 341 (11.69)
turning right 957 37 958 (8.65) | 159 (5.3 5)
turning left 260 31 258 (8.6 s) 158 (5.3 s)
changing lane right 663 81 159 (5.3 s) 106 (3.5 s)
changing lane left 711 87 165 (5.5 s) 115 (3.8 s)
starting 401 30 174 (5.8 s) 103 (3.4 s)
stopping 404 26 199 (6.6 s) 123 (4.1s)

The results on recognizing the previous driving maneuvers are depicted in table 3. Some interesting conclusions
to be drawn from the experimental results are:

1. There is a plateau of accuracy that can be reached using car information only. Certain maneuvers —such as
passing and changing lanes left— cannot be accurately distinguished using car information only.

2. The context is crucial for recognizing maneuvers such as turnings and lane changes.

3. As shown in'?

in a car simulator, the driver’s gaze seems to be strongly correlated with the driver’s mental
state in real life driving. It is, thus, a relevant feature for driver maneuver prediction, specially in lane changes,

passings and turnings.



Table 3. Accuracy for HMMs car only, car and lane and car and gaze data

| Accuracy (%) |

Car Car Car
and Lane | and Gaze

passing 100.0 100.0 100.0
turning right 71.4 85.7 85.7
turning left 0.0 33.3 66.7
changing lane right | 0.0 12.5 6.3
changing lane left 294 17.6 23.5
starting 100.0 66.7 83.3

stopping 100.0 100.0 100.0

4. Predictive Power: The models are able to recognize the maneuver on average 1 second before any significant
(20% deviation) change in the car or contextual signals take place. Table 4 contains the average prediction
power for each of the maneuvers, and figure 5 illustrates through an example what this predictive power means.
It depicts, frame by frame, the lane feature and the -log(likelihood) of the different models for a passing
maneuver. There is no significant change in the lane position until frame 26. However, the models are able to
recognize the passing from frame 4 on. In consequence, our driver behavior models are able to anticipate that
the passing is going to take place about 2/3 seconds before any significant, perceivable change takes place.

Table 4. Predictive power of the models in frames and secods

| Maneuver | Average Predictive Power in Frames (seconds) |

passing 37.7 (1.26 )
stopping 70.7 (2.4 )
changing lane left 2.1 (.1s)
turning left 23.0 (.8 s)
changing lane right 20.3 (\7s)
turning right 15.1 (.5 8)
starting 41.7 (1.4 )

7. CONCLUSIONS AND FUTURE WORK

In this paper we have described our SmartCar testbed: a real-time data acquisition system in a real car and a machine
learning framework for modeling and recognizing driver maneuvers at a tactical level, with special emphasis on how
does the context affect the driver’s performance. We have validated our theoretical framework with real driving data
of over 70 subjects that drove for 1.5 hours in the greater Boston area. We have shown the predictive power of our
modeling framework: on average, each of the seven driving maneuvers can accurately be recognized 1 second before
any significant change in the car signals takes place. We believe that these models would be essential to build more
realistic automated cars in car simulators, to improve the human-machine interface in driver assistance systems, to
prevent potential dangerous situations and to create more realistic automated cars in car simulators.

We are building more complex models of driver behavior following our mathematical framework. More specifically
we have developed extensions of HMMs. Extensions to the basic Markov model generally increase the memory of
the system (durational modeling), providing it with compositional state in time. We are interested in systems that
have compositional state in space, e.g., more than one simultaneous state variable. It is well known that the exact
solution of extensions of the basic HMM to 3 or more chains 1s intractable. In those cases approximation techniques
are needed.!'® However, it is also known that there exists an exact solution for the case of 2 interacting chains.!*

We propose using Coupled Hidden Markov Models (CHMMs!1?) for modeling two interacting processes (humans!!
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Figure 5. Prediction of a passing maneuver about 2/3 seconds before any significant lane change takes place.

or cars). In this architecture state chains are coupled via matrices of conditional probabilities modeling causal
(temporal) influences between their hidden state variables. Figure 2 (b) depicts the graphical model architecture for

CHMMs.

In the case of CHMMs, the state posterior probability is given by 5. Note that we need to introduce another set
of probabilities, Py, which correspond to the probability of state s; at time ¢ in one chain given that the other
chain —denoted hereafter by superscript ' — was in state s;_; at time ¢ — 1. These new probabilities express the causal
influence (coupling) of one chain to the other. The posterior state probability for CHMMs is expressed as

T
Pslpsl(Ol)Psllpsll(Oll) /
P(S|O) = P(O) X H Pst|st_1Ps“s;_lPs;|st_1Pst|si_1pst(Ot)psi(Ot) (5)
t=2
where sq, s}; 04, 0} denote states and observations for each of the Markov chains that compose the CHMMs.
Int10 a deterministic approximation for maximum a posterior (MAP) state estimation is introduced. It enables

fast classification and parameter estimation via EM, and also obtains an upper bound on the cross entropy with
the full (combinatoric) posterior which can be minimized using a subspace that is linear in the number of state



variables. An “N-heads” dynamic programming algorithm samples from the O(N) highest probability paths through
a compacted state trellis, with complexity O(T(C' N)?) for C' chains of N states apiece observing T' data points. The
Cartesian product equivalent HMM would involve a combinatoric number of states, typically requiring O(TN2¢)
computations. We are particularly interested in efficient, compact algorithms that can perform in real-time.

Extending the CHMM framework, we propose a graphical model architecture for modeling driver behavior (see
figure 6): instead of a symmetric CHMM, asymmetric CHMMs are connected in a lattice structure, where the
surrounding traffic affects the behavior of the driver, but not vice-versa. This is just an approximation to the more
realistic situation of mutual interactions. The main justification of such an approximation comes from the fact that
in our experiments, the driver did indeed modify his/her behavior depending on the surrounding traffic, but not
vice-versa.
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Figure 6. Representation of the asymmetric CHMMs lattice for modeling car interactions

Our preliminary results using CHMMs for driver behavior recognition show that: (1) the performance of CHMMs
the same as that of HMMs in the worst case; (2) there are many situations in driving where a single HMM cannot
capture the interactions between the driver and the surrounding traffic. It is specially in these cases when CHMMs
would offer the greatest advantage. We expect to have statistics on the performance of CHMMs in the next weeks.
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